• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Master's Projects
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Master's Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Rate transient analysis and completion optimization study in Eagle Ford shale

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Borade_C_2015.pdf
    Size:
    20.51Mb
    Format:
    PDF
    Download
    Author
    Borade, Chaitanya
    Chair
    Patil, Shirish
    Committee
    Inamdar, Abhijeet
    Khataniar, Sanatanu
    Keyword
    Shale gas reservoirs
    Texas
    Natural gas
    Oil-shales
    Oil shale reserves
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8793
    Abstract
    Analysis of well performance data can deliver decision-making solutions regarding field development, production optimization, and reserves evaluation. Well performance analysis involves the study of the measured response of a system, the reservoir in our case, in the form of production rates and flowing pressures. The Eagle Ford shale in South Texas is one of the most prolific shale plays in the United States. However, the ultra-low permeability of the shale combined with its limited production history makes predicting ultimate recovery very difficult, especially in the early life of a well. Use of Rate Transient Analysis makes the analysis of early production data possible, which involves solving an inverse problem. Unlike the traditional decline analysis, Rate Transient Analysis requires measured production rates and flowing pressures, which were provided by an operator based in the Eagle Ford. This study is divided into two objectives. The first objective is to analyze well performance data from Eagle Ford shale gas wells provided by an operator. This analysis adopts the use of probabilistic rate transient analysis to help quantify uncertainty. With this approach, it is possible to systematically investigate the allowable parameter space based on acceptable ranges of inputs such as fracture length, matrix permeability, conductivity and well spacing. Since well spacing and reservoir boundaries were unknown, a base case with a reservoir width of 1500 feet was assumed. This analysis presents a workflow that integrates probabilistic and analytical modeling for shale gas wells in an unconventional reservoir. To validate the results between probabilistic and analytical modeling, a percent difference of less than 15% was assumed as an acceptable range for the ultimate recoverable forecasts. Understanding the effect of existing completion on the cumulative production is of great value to operators. This information helps them plan and optimize future completion designs while reducing operational costs. This study addresses the secondary objective by generating an Artificial Neural Network model. Using database from existing wells, a neural network model was successfully generated and completion effectiveness and optimization analysis was conducted. A good agreement between the predicted model output values and actual values (R² = 0.99) validated the applicability of this model. A completion optimization study showed that wells drilled in condensate-rich zones required higher proppant and liquid volumes, whereas wells in gas-rich zones required closer cluster spacing. Analysis results helped to identify wells which were either under-stimulated or over-stimulated and appropriate recommendations were made.
    Description
    Master's Project (M.S.) University of Alaska Fairbanks, 2015
    Date
    2015-08
    Type
    Other
    Collections
    Master's Projects
    Master's Projects (Petroleum Engineering)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2021 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.