• An Empirical Model for Optimal Highway Durability in Cold Regions

      Yan, Jia (Center for Environmentally Sustainable Transportation in Cold Climates, 2016-03-10)
      We develop an empirical tool to estimate optimal highway durability in cold regions. To test the model, we assemble a data set containing all highway construction and maintenance projects in Arizona and Washington State from 1990 to 2014. The data set includes information on location, time, type (resurfacing, construction, or lane widening), pavement material and thickness, and total expenditure for these projects. Using the data, we first estimate how highway maintenance costs and highway duration depend on pavement thickness and traffic loading. We then calibrate the effects of different deicers on highway durability and thus on highway maintenance costs. Finally, we demonstrate how the estimated and calibrated model can be used by planners to make optimal decisions for highway pavement and winter operations in cold regions.
    • Environmentally Friendly Pervious Concrete for Treating Deicer-Laden Stormwater: Phase I

      Xu, Gang; Shi, Xianming (Center for Environmentally Sustainable Transportation in Cold Climates, 2015-12-30)
      A graphene oxide-modified pervious concrete was developed by using low-reactivity, high-calcium fly ash as sole binder and chemical activators and other admixtures. The density, void ratio, mechanical strength, infiltration rate, Young’s modulus, freeze-deicer salt scaling, and degradation resistance of this pervious concrete were measured against three control groups. The test results indicate that graphene oxide modified fly ash pervious concrete is comparable to Portland cement pervious concrete. While the addition of 0.03% graphene oxide (by weight of fly ash) noticeably increased the compressive strength, split tensile strength, Young’s modulus, freeze-deicer salt scaling, and degradation resistance of fly ash pervious concrete, it reduced the void ratio and infiltration rate. The fly ash pervious concrete also showed unfavorable high initial loss during the freeze-deicer salt scaling test, which may be attributed to the low hydration degree of fly ash at early age. It is recommended that durability tests for fly ash concrete be performed at a later age.
    • Environmentally Friendly Pervious Concrete for Treating Deicer-Laden Stormwater: Phase II

      Xu, Gang; Shi, Xianming (2018-12)
      In Phase I of this project, graphene oxide (GO)-modified pervious concrete was developed using coal fly ash as the sole binder. The primary objectives of Phase II of this project were (1) to evaluate the stormwater infiltration capacity of GO-modified fly ash pervious concrete; (2) to evaluate the durability performance of GO-modified fly ash pervious concrete using freeze/thaw and salt resistance testing methods; and (3) to use advanced analytical tools to fully characterize the GO-modified fly ash binder. Test results indicate different degrees of reduction in concentrations of possible pollutants in stormwater—copper, zinc, sulphate, chloride, ammonia, nitrate, and total phosphate. The incorporation of GO significantly improved the resistance of pervious concrete to freeze/thaw cycles and ambient-temperature salt attack. The specimens were examined using X-ray diffraction, which revealed that the mineralogy and the chemical composition of fly ash pastes differ considerably from those of cement pastes. Nuclear magnetic resonance was used to study the chemical structure and ordering of different hydrates, and provided enhanced understanding of the freeze/thaw and salt scaling resistance of fly ash pervious concrete and the role of GO.
    • Estimating the Application Rate of Liquid Chloride Products Based on Residual Salt Concentration on Pavement

      Fay, Laura; Akin, Michelle; Muthumani, Anburaj (Center for Environmentally Sustainable Transportation in Cold Climates, 2018-03-21)
      This technical report summarizes the results of laboratory testing on asphalt and concrete pavement. A known quantity of salt brine was applied as an anti-icer, followed by snow application, traffic simulation, and mechanical snow removal via simulated plowing. Using a sample from this plowed snow, researchers measured the chloride concentration to determine the amount of salt brine (as chloride) that remained on the pavement surface. Under the investigated scenarios, the asphalt samples showed higher concentrations of chloride in the plowed-off snow, and therefore lower concentrations of chlorides remaining on the pavement surface. In comparison, the concrete samples had much lower chloride concentrations in the plowed-off snow, and much higher chloride concentrations remaining on the pavement surface. An interesting pattern revealed by the testing was the variation in the percentage of residual chloride on the pavement surface with changes in temperature. When pavement type was not considered, more residual chloride was present at warmer temperatures and less residual chloride was present at colder temperatures. This observation warrants additional testing to determine if the pattern is in fact a statistically valid trend. The findings from the study will help winter maintenance agencies reduce salt usage while meeting the defined Level of Service. In addition, findings will contribute to environmentally sustainable policies and reduce the level of salt usage (from snow- and ice-control products) introduced into the environment.
    • Evaluating Management Options to Increase Roadside Carbon Sequestration

      Ament, Robert; Hartshorn, Tony; Powell, Scott (2019-01-30)
      We estimated the amount of carbon sequestered along Montana Department of Transportation (MDT) roads and tested 3 different highway right-of-way (ROW) management techniques to increase carbon stocks. Using Geographic Information System techniques, the total ROW acreage owned by MDT was found to sequester 75,292 metric tons of carbon per year and to consist mostly of grasslands (70%). From 2016-2018 we tested 3 ROW management techniques to increase carbon stocks- increase mowing height, plant woody shrubs, or add legumes to reclamation seed mixes of disturbed soils - at 3 sites (Three Forks [3F], Bear Canyon [BC], and Bozeman Pass [BP]) along Interstate 90 in southwestern Montana. Soil samples generally averaged 0.75–1.5% soil organic carbon (SOC) at the 3F site, 2.5–4% SOC at the BC site, and 1.5–2.5% SOC at the BP site. Average SOC levels were always lower in 2018 than in 2016. Soil respiration rates were generally highest in June or July at the BC site, averaging ~4 μmol CO2 m-2 second-1. Soil respiration rates were lower at the BC site in November 2016, at the BP site in June 2018, and at the 3F site in July 2018 (all ~2–3 μmol CO2 m-2 s-1). Aboveground biomass carbon estimates generally mirrored belowground SOC estimates. Taken together, our findings suggest that of the three treatments implemented (raised mowing height, shrub planting, and disturbance), minimizing disturbance to soils likely makes the greatest contribution to the medium- and long-term carbon-storage potential of these roadside soils.
    • Evaluating the Potential Effects of Deicing Salts on Roadside Carbon Sequestration

      Fay, Laura; Ament, Rob; Hartshorn, Tony; Powell, Scott (2019-01)
      This project sought to document patterns of road deicing salts and the effects of these salts on the amount of carbon being sequestered passively along Montana Department of Transportation roads; it was designed collaboratively with a related roadside project that tested three different highway right-of-way management techniques (mowing height, shrub planting, disturbance) to determine whether they have the capacity to increase soil organic carbon. Our sampling did not reveal elevated salt levels at any of the nine locations sampled at each of the three I-90 sites. The greatest saline concentrations were found at the sample locations farthest from the road. This pattern was consistent across all three sites. The range of soil organic matter (SOM) was broad, from ~1% to >10%. Generally, SOM values were lowest adjacent to the road and highest farthest from the road. We found no or weak evidence of a relationship between our indices of soil salinity and SOM levels, with electrical conductivity, exchangeable calcium, and cation exchange capacity. Results imply that if road deicing salts are altering patterns of roadside SOM and potential carbon sequestration, this effect was not captured by our experimental design, nor did deicing salts appear to have affected roadside vegetation during our most recent sampling effort. Our findings highlight the value of experimentally separating the multiple potentially confounding effects of winter maintenance operations on roadside soils: roads could focus the flow of water, salts, and sands to roadside soils. How these types of mass inputs to roadside soils might influence medium- or long-term carbon dynamics remains an open question, but their fuller characterization and possible flow paths will be essential to clarifying the role of roadside soils in terrestrial soil organic carbon sequestration strategies.
    • Evaluation of Deicer Impacts on Pervious Concrete Specimens (Phase II)

      Haselbach, Liv; Temizel-Sekeryan, Sila; Ross, Molly; Almeida, Nara (Center for Environmentally Sustainable Transportation in Cold Climates, 2018-05-31)
      This research examined the chemical degradation of pervious concrete due to calcium chloride or magnesium chloride deicers. The project consisted of Phase I, Phase IIa, and Phase IIb. Phase I was previous work where a testing protocol was developed to mimic deicer applications. Phases IIa and IIb are parts of this project. Phase IIa used split tensile testing on Phase I specimens and further evaluated the chemical data from Phase I magnesium chloride applications. Phase IIb repeated the Phase I protocol for a larger number of new ordinary Portland cement specimens and evaluated the impact on strength using the unconfined compressive strength test. The hypotheses were based on complexation and precipitation chemistry. Specimens subjected to calcium chloride showed visible degradation. Specimens exposed to magnesium chloride deicer showed a large increase in loss of calcium ions in Phase I. Both deicers showed a loss in strength compared with a water control in Phase IIb. Results from the split tensile testing were inconclusive. The protocol from Phase I with the unconfined compression test may be an effective testing procedure to determine if different designs might be more resistant to chemical degradation by these two deicing chemicals.
    • Evaluation of Effectiveness and Cost-Benefits of Woolen Roadside Reclamation Products

      Ament, Rob; Cuelho, Eli; Pokorny, Monica; Jennings, Stuart (Center for Environmentally Sustainable Transportation in Cold Climates, 2017-12)
      This research project developed three types of products for study: woolen erosion control blankets (ECBs), wool incorporated into wood fiber compost at a 40:1 ratio (compost to wool, by weight), and wool incorporated into silt fence. The project, supported by Montana Department of Transportation (MDT) and the Center for Environmentally Sustainable Transportation in Cold Climates, compared the wool products’ performance to roadside reclamation products commonly used for revegetating cut slopes: straw/coconut (coir) ECB, wood fiber compost and woven plastic silt fence. Three versions of wool silt fence were developed by the project, yet, even more versions are needed to arrive at a commercially viable product. Wool silt fence was the least promising of the three types of reclamation materials. The primary measure for success for ECBs and wool additive to the compost was the amount of seeded or desired vegetation they established after two growing seasons. The research team evaluated the performance of the woolen and standard products by measuring the percentage of canopy cover of each plant species present in each treatment plot. Canopy cover measures the percentage of ground that is covered by a vertical projection of a plant’s foliage. To conduct the comparative analysis, researchers calculated an average percent canopy cover for each functional group: seeded native grasses, desired non-seeded (volunteer) grasses and forbs, and weeds. There was no statistical difference in the mean canopy cover of seeded grass species of the compost treatment (control) compared to the cut wool with compost treatment, 6.4% and 10.2%, respectively. Thus, the project could not determine that cut wool pieces provided a benefit to plant establishment and growth when it is added to compost material. Further experimentation to determine the ideal ratio of wool pieces to add to compost is warranted. The two best performing treatments (i.e. greatest seeded grass establishment) were the rolled wool/straw ECBs. The 100% wool ECB and 50% wool/50% straw ECB had the greatest mean seeded grass canopy cover after two years. Both of these wool ECBs had more seeded grass canopy cover than the standard 70% straw/30% coir ECB demonstrating their potential as a commercially viable product for roadside revegetation applications. Laboratory tests of the wool/straw ECB demonstrated it was comparable to the specifications of a short-term (Type II B or C) standard ECB used along MDT roadways. Future product development of the wool/straw ECB should focus on improving the shear strength at high flows so it meets all required Type III specifications.
    • Examination of the Variability in Grout Test Results

      Ahn, Il-Sang; Friend, Trenton (2019-08-31)
      Keyway grouting is an operation that connects decked bulb-tee girders into one system. The quality of grout should be well maintained through reliable material test procedures. Due to the issues of discrepancy and variability, there have been several cases in which grout materials did not satisfy the compressive strength standard specified in the DOT&PF Standard Specifications for Highway Construction. This research examined the causes of such issues. Six factors – grout material, mix consistency, workmanship, initial curing/storing, curing method, and test equipment – were identified as the causes of strength variation. Their effects on strength variation were investigated by testing compressive strength of cube and cylinder specimens made from 5 grout materials that were used or considered to be used in DOT&PF projects. Grout material characteristics such as grout material and mix consistency have significant effect on strength variation. Workability and consolidation can be different from one material to another. Consequently, they affect compressive strength and its variation. Workmanship and test equipment were evaluated in this research to have moderate effect on strength variation. Especially, strength variation can increase when the workmanship factor combines with the grout material characteristics factor.
    • A Framework for Life Cycle Sustainability Assessment of Road Salt Used in Winter Maintenance Operations

      Cui, Na; Xie, Ning; Shi, Xianming (Center for Environmentally Sustainable Transportation in Cold Climates, 2016-12)
      It is important to assess from a holistic perspective the sustainability of road salt widely used in winter road maintenance (WRM) operations. The importance becomes increasingly apparent in light of competing priorities faced by roadway agencies, the need for collaborative decision-making, and growing concerns over the risks that road salt poses for motor vehicles, transportation infrastructure, and the natural environment. This project introduces the concept of Life Cycle Sustainability Assessment (LCSA), which combines Life Cycle Costing, Environmental Life Cycle Assessment, and Social Life Cycle Assessment. The combination captures the features of three pillars in sustainability: economic development, environmental preservation, and social progress. With this framework, it is possible to enable more informed and balanced decisions by considering the entire life cycle of road salt and accounting for the indirect impacts of applying road salt for snow and ice control. This project proposes a LCSA framework of road salt, which examines the three branches of LCSA, their relationships in the integrated framework, and the complexities and caveats in the LCSA. While this framework is a first step in the right direction, we envision that it will be improved and enriched by continued research and may serve as a template for the LCSA of other WRM products, technologies, and practices.
    • Freeze-Thaw Durability and Long-Term Performance Evaluation of Shotcrete in Cold Regions

      Qiao, Pizhong; Zhou, Zhidong (Center for Environmentally Sustainable Transportation in Cold Climates, 2017-12-31)
      This study’s aim was to evaluate the freeze-thaw durability of shotcrete in cold regions and predict its long-term performance. One benchmark mix design from the WSDOT was chosen to prepare samples for performance evaluation. Shotcrete specimens were conditioned in accordance with ASTM C666. The long-term freeze-thaw performance after certain cycles was evaluated using the dynamic modulus of elasticity test (ASTM C215), fracture energy test (RILEM 50-FMC), and X-ray CT microstructure imaging analysis. Probabilistic damage analysis was conducted to establish the relation between the durability life and the damage parameter for different probabilities of reliability using the three-parameter Weibull distribution model. The fracture energy test was found to be a more sensitive test method than the dynamic modulus of elasticity for screening material deterioration over time and for capturing accumulative material damage caused by rapid freeze-thaw action, because of smaller durability factors (degradation ratios) obtained from the fracture energy test. X-ray CT imaging analysis is capable of detecting microcracks that form and pore evolution in the aggregate and interface transition zone of conditioned samples. Moreover, the continuum damage mechanic-based model shows potential in predicting long-term material degradation and the service life of shotcrete.
    • Guidelines for the Use of Synthetic Fluid Dust Control Palliatives on Unpaved Roads

      Barnes, David; Connor, Billy (Center for Environmentally Sustainable Transportation in Cold Climates, 2017-07-06)
      The amount of small soil particles, dust, lost from typical unpaved roads to fugitive dust is staggering. A 1 km stretch of unpaved road can contribute over 2400 kg of dust to the atmosphere (4.2 ton/mile) in a typical 3-month summer season. Road managers typically manage dust from unpaved roads with various dust-control palliatives, which are effective for up to 1 year. Synthetic fluids are a relatively new category of dust-control palliatives. Unlike the more commonly used dust-control palliatives, such as salts, engineering guidelines do not exist for the application and maintenance of synthetic fluids on unpaved roads. To fill this void, we present through this document guidelines for road design and maintenance, palliative selection, application, and care of synthetic fluid-treated roadways.
    • Highly Abrasion-resistant and Long-lasting Concrete

      Liu, Jenny; Murph, Diane (2019-08)
      Studded tire usage in Alaska contributes to rutting damage on pavements resulting in high maintenance costs and safety issues. In this study binary, ternary, and quaternary highly-abrasion resistant concrete mix designs, using supplementary cementitious materials (SCMs), were developed. The fresh, mechanical and durability properties of these mix designs were then tested to determine an optimum highly-abrasion resistant concrete mix that could be placed in cold climates to reduce rutting damage. SCMs used included silica fume, ground granulated blast furnace slag, and type F fly ash. Tests conducted measured workability, air content, drying shrinkage, compressive strength, flexural strength, and chloride ion permeability. Resistance to freeze-thaw cycles, scaling due to deicers, and abrasion resistance were also measured. A survey and literature review on concrete pavement practices in Alaska and other cold climates was also conducted. A preliminary construction cost analysis comparing the concrete mix designs developed was also completed.
    • Impact of Cold Climates on Vehicle Emissions: The Cold Start Air Toxics Pulse

      Jobson, Tom; Huangfu, Yibo (Center for Environmentally Sustainable Transportation in Cold Climates, 2016-09)
      This project measured cold start emissions from four vehicles in winter using fast response instrumentation to accurately measure the time variation of the cold start emission pulse. Seventeen successful tests were conducted over a temperature range of -4°C to 10°C in winter 2015 at the Washington State University campus. Vehicle cold starts are thought to be a significant source of air toxic compounds in cold winter environments due to the rapid increase in mass emission rates with decreasing temperature. We used a proton transfer reaction mass spectrometer for high time resolution measurement of the emissions the air toxic compounds benzene, formaldehyde, acetaldehyde, in addition to toluene and C2-alkylbenzenes. Measured molar emission ratios relative to toluene in the cold start pulse were compared with cold start emission profiles for E10 fueled vehicles used in the EPA MOVES2014 model. We found that the measured acetaldehyde-to-toluene emission ratio was about a factor of 8 greater than the emission ratio used in MOVES2014. Measured formaldehyde-to-toluene emission ratios were a factor of 5 greater. Our study suggests that emission of the air toxics acetaldehyde and, likely, formaldehyde is significantly underestimated in wintertime by the MOVES2014 model.
    • The Impact of Snowfall on Airport Operations and Delays

      Lee, Jukwan; Yan, Jia (2019-03-31)
      Flight delays or cancelations due to snowfall are a costly inconvenience, not only to airports but also to airlines, passengers and society as a whole. However, no quantitative research has ever been done to provide an analytical explanation about the issue. Though being a reliable alternative to melt snow on the runway and mitigate flight delays, the Heated Pavement System is not adopted in any US airports because of concerns over the initial investments and maintenance costs being higher than the economic loss from delays during unpredictable snowfall days. Combining weather and domestic flight data in Boston and Los Angeles regions, we analyze the benefits and costs associated with installing the Heated Pavement System. Using two advanced econometric methods, the Difference in Difference in Difference (DDD) and the nearest neighbor matching, we first develop a Delay Analysis model to evaluate the exact effect of snowfall on flight delays, and then we calculate the delay costs. Based on the empirical findings, we conduct cost-benefit analysis of installing HPS at the three airports in Boston area. Our results indicate that HPS is feasible for airports with a great number of flights and passengers, such as Boston Logan airport.
    • Investigation of Alternative Deicers for Snow and Ice Control

      Fay, Laura; Akin, Michelle (Center for Environmentally Sustainable Transportation in Cold Climates, 2018-03-15)
      This technical report presents the findings of the laboratory analysis of potassium succinate (KSu) as a roadway deicer. Laboratory analysis included modified SHRP ice-melting testing, a differential scanning calorimetry (DSC) thermogram, and friction measurements to quantify performance. The overall results indicate that the performance of KSu is similar to that of NaCl at improving friction on roadways during snow and ice conditions. The results of DSC suggest that KSu can be applied as a roadway deicer at -5°C (23°F) and above. However, KSu does not function as a deicer at colder temperatures where salt brine will work (the generally agreed upon lowest working temperature for salt brine is 15°F [-9.5°C]). The results of the laboratory testing show that KSu functions as a roadway deicer with slightly lower ice-melting rates than salt brine. The ice-melting rates, DSC, and friction performance testing of KSu show that the product performs as a deicer at warmer temperatures than salt brine, with slightly less ice-melting capacity and similar friction performance. Based on these and previous results showing lack of corrosion in metals, equipment, and pavements from use of KSu and similar BOD of KSu to potassium acetates, KSu appears to be a viable option as a roadway deicer at temperatures at or above -5°C (23°F). Use of KSu as a roadway deicer may be focused in areas where there are concerns about impacts to infrastructure, equipment, or pavements, such as on bridges, elevated roadways, in parking garages, or on newer concrete pavements. Potential concerns with the use of KSu as a roadway deicer are its price, lack of full-scale manufacturing of KSu at this time, and the BOD exerted by the product. Additional testing to fully quantify the environmental impacts of KSu on soil, water, flora, and fauna is recommended. If water quality and BOD are of concern, application of this product is not recommended in large quantities and during times of low water flow.
    • Laboratory and Field Evaluation of Modified Asphalt Binders and Mixes for Alaskan Pavements

      Liu, Jenny; Liu, Jun (2019-08)
      In order to properly characterize modified asphalt binders and mixes for Alaskan pavements, this study evaluated properties of 13 asphalt binders typically used in Alaska from three different suppliers, and 10 hot mix asphalt (HMA) mixtures which were either produced in the lab or collected from existing paving projects in Alaska. Various binder and mixture engineering properties were determined, including true high binder grades, complex modulus (G*), and phase angle (δ) at high performance temperatures, multiple stress creep recovery rate and compliance, bending beam rheometer stiffness and m-value, Glover-Rowe parameter, ΔT, rheological index, and crossover frequency for binders, and rut depth, critical strain energy release rate (Jc), Indirect tensile (IDT) creep stiffness and strength for mixtures. Binder cracking temperatures were determined using asphalt binder cracking device. Mixture cracking temperatures were determined with IDT creep compliance and strength data. It was found that rutting and cracking resistances of the mixtures with highly modified binders were better than the mixture with unmodified asphalt binder (PG 52-28). Future recommendations for highly modified asphalt binders applications and research were provided based on laboratory testing results and field survey evaluation.
    • Long-term Stabilization of Disturbed Slopes Resulting from Construction Operations

      Perkins, Robert (Center for Environmentally Sustainable Transportation in Cold Climates, 2018-03)
      Highway construction disturbs soil, which must be stabilized to prevent migration of soil particles into water bodies. Stabilization is enforced by law, regulation, and a permit system. Stabilization is most efficiently attained by reestablishment of vegetation, and permits sometimes specify this method of stabilization. Revegetation is difficult in northern Alaska, and seeded grasses often die in a year or two, while reestablishment with native vegetation takes several years. A literature search and interviews with experts indicates that simply extending this “establishment period” has many practical difficulties. Field investigations and interviews indicate that in northern Alaska little erosion occurs at slopes with failed vegetation, which implies that vegetation was not critical to reducing contamination and the expense of revegetation was unnecessary. However, when revegetation is specified in standard permit language, and contractor, owner, and regulator must close out projects, grasses are utilized. This research supports the recommendation that the Alaska Department of Transportation and Public Facilities work with the Alaska Department of Natural Resources and the Alaska Department of Environmental Conservation to develop special standards for projects north of the Brooks Range and between the Brooks and Alaska ranges, that recognize the low erosion potential of clean road fill – embankments.
    • Mapping the Wolverine Way: Identifying Conservation Corridors and Transboundary Linkages in the Canadian Crown of the Continent Region

      Clevenger, Anthony P. (2019-09-13)
      The Canadian Crown of the Continent (CCoC) is one of three zones where wolverines can move between Canada and the US, providing the last links for recruitment and ultimately gene flow to the highly fragmented population in the US Rocky Mountains. However, a combination of rapidly expanding logging, energy development and motorized recreation, along with a growing road network, threatens to fragment and diminish connections in this critical transboundary linkage between the US and Canada. This report summarizes a project to complete a 3-year sampling effort in the CCoC, which in turn completed a larger 6-year effort over a vast area of the central and southern Canadian Rockies. In 2016, the research team surveyed the last unsampled portion of the Alberta Rockies (south of Kananaskis Country to Highway 3) in addition to a substantial portion of the East Kootenay region of the British Columbia Rockies (BC; >9000 km2). This follow-up effort allowed the team to complete an entire ecoregion-wide wolverine survey in the Canadian Rockies ecoregion, from the US-Canadian border north to Banff and Yoho National Parks. From this data, researchers created density estimates and occupancy models of wolverine distribution and its multiple landscape stressors across an extensive and complex region of the Great Northern Landscape. The report summarizes research findings and makes recommendations regarding management strategies.
    • Modeling Impacts of Cold Climates on Vehicle Emissions

      Chung, Serena (Center for Environmentally Sustainable Transportation in Cold Climates, 2017-01-20)
      This project relates to the research thrust area of ‘environmental impact assessment,' specifically the impact of cold climates on vehicle exhaust emissions. Motor vehicles emit pollutants that are harmful to human. Emissions are thought to be elevated during engine cold starts. During winter, low-lying temperature inversion can trap vehicle emissions near the surface, leading to significantly elevated pollutant concentrations. Despite the importance, vehicle emissions data for cold climates are sparse and the accuracy of vehicle emissions model parameterizations for cold climates is not known. The goal of this project is to improve ability of EPA's Motor Vehicle Emission Simulator (MOVES) model to simulate cold start emissions in cold climates