• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Research in advanced nuclear development and planning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kuca_M_2014.pdf
    Size:
    12.91Mb
    Format:
    PDF
    Download
    Author
    Kuca, Michael
    Chair
    Perkins, Robert A.
    Committee
    Schnabel, William E.
    Barnes, David L.
    Keyword
    Nuclear power plants
    Alaska
    Nuclear energy
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8842
    Abstract
    This project began as an examination of small and mini nuclear power plants as an emergent energy technology capable of sustained base-load power generation in northern climates. Literature review immediately demonstrated Alaska should remain current on small and mini nuclear power plants because commercial vendors are promoting their products to state leaders as certain solutions. Is Alaska prepared to receive, operate, and decommission advanced nuclear technology as an alternative to traditional hydrocarbon power plants? The graduate committee encouraged me to facilitate discussions with Alaska Center for Energy and Power (ACEP) leadership in reference to their 2010 study on small modular reactors. Gwen Holdman, Brent Sheets, and George Roe offered great encouragement for this project and allowed me to participated in nuclear related meetings with affiliates. In fall 2013, ACEP was hosting Idaho National Laboratory guests to discuss areas of common research interest. I was invited to prepare a short presentation of this project to Dr. Steven Aumeier, Director of Center for Advanced Energy Studies and Michael Hagood, Director of Program Development. ACEP and INL later determined a mobile mini reactor design for remote terrestrial deployment represents common research interests, and INL funded three UAF student fellowships at the Center for Space Nuclear Research (CSNR) Dr. Stephen Howe, Director of CSNR, allocated a team of six graduate fellows to explore terrestrial applications of a tungsten fuel matrix currently under design for nuclear thermal propulsion. UAF students selected for CSNR fellowship included Haley McIntyre, Alana Vilagi, and me. The team designed a Passively Operating Lead Arctic Reactor (POLAR), presented the POLAR design to INL staff and industry leaders and a subsequent poster was provided for the INE conference for Alaska Energy Leaders in October 2014. In addition to exceptional engineering experience, I was able to advance the graduate project in areas of technology, policy, economics, and energy infrastructure requirements needed to accept advanced nuclear technology. Concurrently, under a memorandum of agreement between the University of Alaska and Alaska Command ALCOM, I was able to advance the project to consider military applications of small modular reactors with ALCOM Energy Steering Group. It was in this context where I evaluated military installation energy usage in interior Alaska as compared to production of integral pressurized water reactors likely to emerge first in the commercial sector, and the ability of Alaska military to adopt this technology. As a side project, select courses of action were prepared and briefed to the commanding general of ALCOM should the nuclear option become attractive to the military. What began as an independent examination of small and mini nuclear power plants to satisfy a three-credit project requirement became an incredible collaboration among civilian, state, university, military, and industrial shareholders of the Alaska energy sector. Specific recognition for this report belongs to Haley McIntyre for her contribution to policy frameworks and as editor for this report, and Alana Vilagi for her contribution to process heat applications. The graduate committee along with ACEP leadership, INL-CSNR, and ALCOM should all be recognized as facilitators in this review of nuclear power in Alaska. The following report is presented in six chapters. The first two chapters attempt to introduce the reader to the current state of commercial nuclear energy in the nation as a pretext to developing the advanced reactor designs. Modifications to the existing framework are provided and the total cost of nuclear in Alaska is considered as opportunities and barriers to deployment are evaluated. As a conclusion, scenarios are developed to explain how this technology may contribute to our energy sector in the future. This project was unfunded, and its findings are intended to present a neutral examination of emergent nuclear design in the Alaska energy sector.
    Description
    Master's Project (M.S.) University of Alaska Fairbanks, 2014
    Date
    2014-12
    Type
    Master's Project
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.