• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    A Mechanism For Current Sheet Thinning In The Growth Phase Of Magnetospheric Substorms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hall_F_2006.pdf
    Size:
    2.884Mb
    Format:
    PDF
    Download
    Author
    Hall, Fred, Iv
    Chair
    Otto, Antonius
    Keyword
    Plasma physics
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8875
    Abstract
    The thinning of the near-Earth current sheet during the growth phase of magnetospheric substorms is a fundamental problem of space physics. It is a characteristic of the slow, steady evolution of the magnetosphere during the growth phase, during which the bulk kinetic energy of the solar wind is transformed into and stored as magnetic field energy in the magnetotail lobes. The thin near-Earth current sheet at the end of the growth phase provides the conditions for the onset of the expansion phase, and is fundamentally important to understand the physical mechanism for the onset of the rapid evolution during which the stored energy is released. I propose that current sheet thinning occurs because of the evacuation of a 'magnetic flux reservoir' in the near-Earth magnetotail by convection to replace magnetic flux that is eroded on the dayside by magnetic reconnection. My hypothesis is able to predict basic properties of current sheet thinning, such as the location, temporal evolution, and dynamics of this process. I examined this new mechanism both conceptually and quantitatively. My conceptual considerations enabled the prediction of the location and duration of current sheet thinning. This location is largely independent of the detailed state of the magnetosphere. I examined this mechanism quantitatively through the use of a three-dimensional ideal MHD simulation. I was able to predict the duration of the growth phase by considering the time needed to deplete our proposed 'magnetic flux reservoir.' The simulation demonstrates the global increase of the current density in this reservoir, despite the removal of magnetic flux---which one would otherwise expect to lead to a decrease of current---as well as even greater local amplifications of the current density. The simulation results are even more significant because the model does not include other effects of the real magnetosphere that contribute to a further increase of the tail current. The increase in current density and thinning are found to be consistent with the amount of flux removed from the system. In addition, I have found a new explanation for the very thin bifurcated current sheets that have been reported in recent publications.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2006
    Date
    2006
    Type
    Dissertation
    Collections
    Physics

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.