• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    The Influence Of Water Velocity And Depth On Prey Detection And Capture By Juvenile Coho Salmon And Steelhead: Implications For Habitat Selection And Segregation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Piccolo_J_2005.pdf
    Size:
    2.005Mb
    Format:
    PDF
    Download
    Author
    Piccolo, John J.
    Chair
    Hughes, Nicholas F.
    Keyword
    Aquatic sciences
    Ecology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8879
    Abstract
    I studied the effects of water velocity and depth on drift-foraging by juvenile coho salmon and steelhead to assess how these influence their reported habitat segregation into pools and riffles, respectively. I used three-dimensional video analysis of stream-tank foraging experiments to test how velocity and depth influence prey capture probabilities, and the geometry and dynamics of prey detection and capture. I used the experimental results to develop net energy intake models to predict optimal foraging velocities for coho and steelhead. Prey capture probabilities for both coho and steelhead declined from $65% to 10% with an increase in velocity from 0.29 to 0.61 m · sec -1, with little difference between the species. Capture maneuver characteristics were similar for both species, including reduced prey detection distance and capture probabilities within the capture area, constant prey interception speed, and increasing return speed. I conclude that faster velocity reduces prey capture success by coho and steelhead, but that differences in capture abilities are not responsible for habitat segregation. Prey capture probabilities for both species were constant at ~40% at depths from 0.15 to 0.60 m, with little difference between the species. Capture maneuver characteristics were similar for both species, including increased prey detection distance and interception speed, and constant return speed. I predict that prey capture rate increases proportionally to water depth for coho and steelhead, but that differences in capture probabilities are not responsible for habitat segregation. I used the experimental results to develop net energy intake models that predicted optimum foraging velocities of 0.29 m · s-1 for coho and 0.30 m · s-1 steelhead. Modeled 10% and 25% increases in swimming costs for coho reduced optimum velocity by 0 and 0.01 m · s-1, respectively. These results, coupled with those from the depth experiments, suggest that habitat segregation may be due to factors other than short-term foraging considerations. I propose that these are largely selective mechanisms such as size-based habitat selection, differences in growth trajectories, or prey specialization. I do not discount the possibility that interactive mechanisms are also important, especially at periods of high fish density or limited prey availability.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2005
    Date
    2005
    Type
    Dissertation
    Collections
    Fisheries

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.