• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Seasonal Variability Of Pristane In Mussels (Mytilus Trossulus) In Prince William Sound, Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Short_J_2005.pdf
    Size:
    6.641Mb
    Format:
    PDF
    Download
    Author
    Short, Jeffrey W.
    Chair
    Shirley, Thomas
    Keyword
    Aquatic sciences
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8883
    Abstract
    Pristane (2,6,10,14-tetramethylpentadecane) concentrations in mussels (Mytilus trossulus) increase abruptly during spring in Prince William Sound (PWS), Alaska. This increase is mainly due to ingestion by mussels of pristane-laden feces produced by nearshore zooplanktivores, especially juvenile pink salmon (Oncorhynchus gorbuscha), and I evaluate whether the increase may be used as an index of foraging success, and hence early marine survival, of pink salmon. Pristane is biosynthesized by Neocalanus copepods. Examination of the trophic and temporal distribution of pristane found in 3,007 samples implicates Neocalanus copepods as the source of pristane in PWS. Neocalanus copepods often dominate the zooplankton biomass during spring in PWS. Juvenile pink salmon, preying on Neocalanus , produce pristane-laden feces that are accumulated by mussels 52 times more efficiently than is dissolved pristane. Releases en masse of ~100,000,000 juvenile pink salmon from a hatchery at the peak of the Neocalanus bloom were immediately followed by increases in pristane concentrations of nearby mussels monitored during 1996 and 1998. Accumulation of dissolved pristane, or of fecal pellets produced by Neocalanus copepods, were substantially less important pathways of pristane transfer to mussels. The transfer pathway to mussels via feces produced by zooplanktivores preying on Neocalanus is the basis for a potential linkage between pristane accumulation by mussels and survival of juvenile pink salmon, because it reflects indirectly the magnitude of Neocalanus prey consumed. Annual survival values of hatchery pink salmon were weakly correlated (P = 0.10) with pristane concentrations monitored in mussels at 25 stations distributed throughout PWS from 1995 through 2001. Although Neocalanus copepods are considered important forage for juvenile pink salmon, feeding experiments reported herein confirm previous studies implicating growth inhibition by pristane. Hence, the forage value of Neocalanus copepods may be considerably lower than is usually assumed.
    Pristane (2,6,10,14-tetramethylpentadecane) concentrations in mussels (Mytilus trossulus) increase abruptly during spring in Prince William Sound (PWS), Alaska. This increase is mainly due to ingestion by mussels of pristane-laden feces produced by nearshore zooplanktivores, especially juvenile pink salmon (Oncorhynchus gorbuscha), and I evaluate whether the increase may be used as an index of foraging success, and hence early marine survival, of pink salmon. Pristane is biosynthesized by Neocalanus copepods. Examination of the trophic and temporal distribution of pristane found in 3,007 samples implicates Neocalanus copepods as the source of pristane in PWS. Neocalanus copepods often dominate the zooplankton biomass during spring in PWS. Juvenile pink salmon, preying on Neocalanus , produce pristane-laden feces that are accumulated by mussels 52 times more efficiently than is dissolved pristane. Releases en masse of ~100,000,000 juvenile pink salmon from a hatchery at the peak of the Neocalanus bloom were immediately followed by increases in pristane concentrations of nearby mussels monitored during 1996 and 1998. Accumulation of dissolved pristane, or of fecal pellets produced by Neocalanus copepods, were substantially less important pathways of pristane transfer to mussels. The transfer pathway to mussels via feces produced by zooplanktivores preying on Neocalanus is the basis for a potential linkage between pristane accumulation by mussels and survival of juvenile pink salmon, because it reflects indirectly the magnitude of Neocalanus prey consumed. Annual survival values of hatchery pink salmon were weakly correlated (P = 0.10) with pristane concentrations monitored in mussels at 25 stations distributed throughout PWS from 1995 through 2001. Although Neocalanus copepods are considered important forage for juvenile pink salmon, feeding experiments reported herein confirm previous studies implicating growth inhibition by pristane. Hence, the forage value of Neocalanus copepods may be considerably lower than is usually assumed.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2005
    Date
    2005
    Type
    Dissertation
    Collections
    Fisheries

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.