• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Experimental Study Of Adsorbed Cation Effects On The Frost Susceptibility Of Natural Soils

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Darrow_M_2007.pdf
    Size:
    4.991Mb
    Format:
    PDF
    Download
    Author
    Darrow, Margaret Marie
    Chair
    Huang, Scott
    Shur, Yuri
    Keyword
    Civil engineering
    Environmental engineering
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8923
    Abstract
    Frost heaving is ubiquitous throughout cold regions, causing damage to building foundations, roads, airfields, railways, utilities, and pipelines. Out of the voluminous body of research conducted over the last 80 years, few studies investigated the mineral surface effects on frost heaving. These previous studies were conducted nearly 50 years ago with rudimentary equipment and on homogeneous and artificial soils that have limited applicability to actual field conditions. The purpose of the research presented here is to investigate the adsorbed cation effects on the frost susceptibility of natural soils through experimental testing. A comprehensive suite of laboratory experiments was conducted on five natural heterogeneous soils, including the preparation of divalent and monovalent cation-treated samples. Experimental testing included measurements of engineering index properties, chemical properties, clay content and mineralogy, soil-moisture characteristic curves, unfrozen water content, zeta potential, and frost heave testing. Frost heave tests were conducted using a state-of-the-art laboratory system that demonstrates high repeatability. Soil-moisture characteristic---soil freezing characteristic (SMC-SFC) relations were developed for the five natural soils over an unprecedented range of measurements and using a new approach, which can be related to the Clausius-Clapeyron equation. The SMC-SFC relations yield a new variable, eta, which describes the water retention properties of soil at increasing matric potentials and decreasing temperatures. The five untreated soils demonstrated significantly different frost heave ratios, ranging from 0.7 percent to 49.2 percent. Statistical analysis indicates that the frost susceptibility of the five untreated soils is most dependent on adsorbed cations, eta, amount of microaggregates smaller than 2 mum, and clay content. For the entire body of untreated and cation-treated samples, statistical analysis indicates that the frost susceptibility is most dependent on adsorbed cations, unfrozen water content, and amount of smectite, kaolinite, and chlorite present in the soil. The results from each cation treatment indicate that the frost susceptibility of (1) Ca2+-saturated soil is most dependent on zeta potential and unfrozen water content; (2) Mg2+-saturated soil is most dependent on zeta potential and amount of chlorite; and (3) Na +-saturated soil is most dependent on zeta potential, unfrozen water content, and amount of chlorite.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2007
    Date
    2007
    Type
    Dissertation
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.