• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Adaptations Of The Bacterial Flywheel For Optimal Mineral Cycling In Oligotrophic Surface Waters

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Gustafson_E_2008.pdf
    Size:
    1.187Mb
    Format:
    PDF
    Download
    Author
    Gustafson, Elizabeth S.
    Chair
    Button, Don K.
    Keyword
    Microbiology
    Biogeochemistry
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8959
    Abstract
    Nutrient cycling in a subarctic oligotrophic lake was explored using current kinetic theory for organisms adapted to low nutrient environments with emphasis on bacterial contributions to system function. Techniques were refined which minimize sample disturbance and contamination for the purpose of accurately measuring bacterioplankton activity. Seasonal variations in DNA content, cell mass, species composition, specific affinity for amino acids and cell yield were observed. Quasi-steady state formulae describe bacteria as a flywheel in nutrient cycling; energy is conserved within a relatively constant biomass by varying bacterial activity with nutrient availability. The bacterial flywheel paradigm provides a bacteriocentric view of mineral cycling, linking kinetics to specific cytoarchitectural properties while maintaining links to substrate and grazing pressures. As an extention of the microbial loop paradigm, the flywheel becomes essential at high latitudes. In winter, low solar input interrupts the microbial loop so that the dissolved organic carbon (DOC) pool is cycled through bacteria only. This activity allows bacterioplankton to persist through winter and respond rapidly to springtime warming and nutrients. Microbial adaptations to seasonal variations in nutrient availability and temperatures were examined within the bacterial flywheel framework. Organisms are well-adapted to a narrow (17°C) in situ temperature range. Activation energies for small warming were low at the temperature extremes (20.6 kJ mol -1 at 0.5°C; -32 kJ mol-1 at 17°C) and high in spring (110 kJ mol-1 at 1.2°C). Nutrition varies by season, supplied in large part by amino acids in spring and summer. Winter growth rates are at least 0.013 day-1 whereas partial growth rate on amino acids for that season is only 2.8 x 10-5 day -1. It is proposed that winter organisms rely on diffusion transport and/or shift toward concurrent use of a large suite of substrate types for growth and maintenance.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2008
    Date
    2008
    Type
    Dissertation
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.