• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    The Influence Of Soil Cryostructure On The Creep And Long Term Strength Properties Of Frozen Soils

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bray_M_2008.pdf
    Size:
    5.051Mb
    Format:
    PDF
    Download
    Author
    Bray, Matthew Thomas
    Keyword
    Civil engineering
    Geology
    Geotechnology
    Soil sciences
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8983
    Abstract
    The time dependent mechanical properties of ice-rich frozen soils were studied in relation to their cryostructure. The CRREL permafrost tunnel was the primary source of the studied ice-rich soils. Mapping of the permafrost geology of the main adit of the CRREL permafrost tunnel was performed and reinterpreted in the context of a cryofacial approach. The cryofacial approach in based on the concept that cryostructure is dependent on how a soil was deposited and subsequently frozen. Three main soil cryostructures were determined to represent the main aspects of the permafrost geology. Soils with micro-lenticular cryostructure represent the original ice-rich syngenetic permafrost formed during the Pleistocene. Reworked sediment due to fluvial-thermal erosion resulted in soils with massive cryostructure and soils with reticulate-chaotic cryostructure. Ice bodies within the tunnel include syngenetic wedge ice and secondary thermokarst cave ice deposits. A testing program for determining the time dependent mechanical properties, including the creep and long term strength characteristics of permafrost in relation to soil cryostructure, was performed. Undisturbed frozen soils include silty soil containing micro-lenticular, reticulate-chaotic, and massive cryostructure. Remolded silt from the tunnel was used to create artificial samples with massive cryostructure for comparison to the undisturbed frozen soils. In addition to frozen silt, undisturbed ice facies were tested. These included syngenetic wedge ice, Matanuska basal glacial ice, and Matanuska glacial ice. Testing methods include uniaxial constant stress creep (CSC) tests and uniaxial relaxation tests. It was shown that soil cryostructure and ice facies influences the creep and long term strength properties of frozen soils. It was shown that remolded soils provide non-conservative creep and long term strength estimates when extrapolated to undisturbed frozen soils. Minimum strain rate flow laws show that at low stresses, undisturbed soils creep at a faster rate than remolded soils. At high stresses, frozen soils creep at a faster rate than ice. It was also shown that the unfrozen water content influences the mechanical properties of frozen soils and that the unfrozen water content is influenced by soil cryostructure. Through cryostructure, the permafrost geology is related to the time dependent mechanical properties of frozen soils.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2008
    Date
    2008
    Type
    Dissertation
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.