• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Surface Structure Of Hydrated And Iron(Ii) Reacted Hematite(11(-)02) And (0001)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Tanwar_K_2008.pdf
    Size:
    3.615Mb
    Format:
    PDF
    Download
    Author
    Tanwar, Kunaljeet S.
    Chair
    Trainor, Thomas
    Keyword
    Geochemistry
    Environmental science
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/8997
    Abstract
    Reactions on naturally abundant hematite (alpha-Fe2O 3) surfaces significantly influence the transport and bio-availability of a number of important nutrients and contaminants. The surface reactivity of alpha-Fe2O3 is dependent on the surface structure, i.e. the identity and coordination of chemical moieties exposed at the surface. The surface structure is strongly influenced by the presence of water and common aqueous species such as Fe(II). Therefore, it is important to understand how the surface structure evolves in the presence of water and aqueous species (e.g. Fe(II)) in order to model the surface reactivity of hematite in natural aquatic systems. The current study provides a detailed experimental investigation of the surface structure of two predominant natural faces of alpha-Fe2O 3, the (1102) and (0001) surfaces under hydrated conditions in absence and presence of aqueous Fe(II). The surface structure of hydrated alpha-Fe2O3(1102) prepared via a room-temperature wet chemical and mechanical polishing (CMP) procedure is consistent with a surface termination where the top layer of iron atoms is absent compared to the stoichiometric bulk termination. The annealing of CMP prepared alpha-Fe2O3(1 102) in air at 773 K results in transformation of the surface to a structure consistent with the stoichiometric termination. For CMP prepared alpha-Fe2O3(0001), the experimental results show a co-existence of two distinct structural domains on the surface. The first domain corresponds to hydroxylation of surface Fe atoms, and the second domain is formed by complete removal of the surface Fe cation leading to an exposed oxygen layer on the surface. The exposure of CMP prepared alpha-Fe2O3(1 102) and (0001) to aqueous Fe(II) results in structural modification of both surfaces due to adsorption of Fe(II) at crystallographic lattice sites followed by oxidation to Fe(III). Preliminary research conducted to identify the effect of Fe(II) induced surface modification on reactivity using Pb(II) as a reactive probe indicates that the clean and Fe(II)-modified surfaces exhibit significantly different reactivity towards Pb(II). Overall, the systematic structural characterization of hydrated and Fe(II)-modified alpha-Fe 2O3 surfaces presented in the current study will provide a basis to elucidate surface structure-reactivity relationships for hematite and will aid in developing models of mineral-water interfacial reactivity.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2008
    Date
    2008
    Type
    Dissertation
    Collections
    Chemistry and Biochemistry

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.