• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Modeling Of A Novel Triple Turbine Solid Oxide Fuel Cell Gas Turbine Hybrid Engine With A 5:1 Turndown Ratio

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Burbank_W_2009.pdf
    Size:
    4.402Mb
    Format:
    PDF
    Download
    Author
    Burbank, Winston Starr, Jr.
    Chair
    Witmer, Dennis E.
    Keyword
    Mechanical engineering
    Alternative Energy
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9003
    Abstract
    Electrical production using solid oxide fuel cell gas turbine (SOFC-GT) hybrid systems has received much attention due to high-predicted efficiencies, low pollution and the availability of natural gas. Solid oxide fuel cell (SOFC) systems and hybrid variants designed to date have had narrow operating ranges due largely to the lack of control variables available to control the thermal requirements within the SOFC. Due to the higher value of peak power, a system able to meet fluctuating power demands while retaining high efficiencies is strongly preferable to only base load operation. This thesis presents results of a novel SOFC-GT hybrid configuration designed to operate over a 5:1 turndown ratio. The proposed system utilizes two control variables that allow the hybrid to maintain the SOFC stack exit temperature at a constant 1000�C throughout the turndown. The first control variable is the setting of a variable-geometry inlet nozzle turbine, which most directly influences the system airflow. The second control variable is an auxiliary combustor, which allows control of the thermal and power needs of the turbomachinery independently from that of the SOFC. At low turndown the proposed hybrid operates similarly to previous hybrids, in that roughly 80% of the power is delivered from the SOFC. However, the newly proposed hybrid uses the unique turbomachinery to drastically increase the delivered power at higher power demands. A unique aspect of the proposed hybrid is the contribution of half the rated power being supplied by the inexpensive turbomachinery with the expensive SOFC contributing the other half. This will significantly lower system capital costs compared to previous hybrid designs. The proposed hybrid has high efficiencies throughout turndown with peak efficiencies occurring at low turndown levels.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2009
    Date
    2009
    Type
    Dissertation
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.