• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Overwintering Physiology Of Arctic And Subarctic Insects From Interior Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sformo_T_2009.pdf
    Size:
    2.919Mb
    Format:
    PDF
    Download
    Author
    Sformo, Todd L.
    Chair
    Barnes, Brian
    Duman, John
    Committee
    Boyer, Berty
    Martinson, Tracey
    Keyword
    Zoology
    Entomology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9041
    Abstract
    This dissertation focuses on the overwintering of three insects from Interior Alaska: a hemipteran, Elasmostethus interstinctus, and a coleopteran, Cucujus clavipes puniceus, that are freeze avoiding in the strict sense of the phrase, and a dipteran, Exechia nugatoria, that is simultaneously partially freeze avoiding and freeze tolerant. The variability within the freeze avoidance strategy itself is a key theme throughout this dissertation. Two significant contributions to comparative physiology are the confirmation of insect vitrification (glass formation) with its attendant extension of freeze avoidance and survival into a new, extreme low temperature record of -100�C and the simultaneous coupling of freeze avoidance and tolerance within an individual, which may more properly be described as a new overwintering strategy. Vitrification is the process by which ice crystallization is circumvented, resulting in a supercooled amorphous solid. Through a combination of antifreeze proteins that inhibit ice nucleation, dehydration tolerance, presence of high glycerol concentration, and low temperatures, the mobility of the remaining liquid water molecules is reduced, effectively by-passing the crystalline state. The second contribution is the discovery of a new overwintering strategy that combines freeze avoidance and freeze tolerance within an individual. In this case, the abdomen freezes (and the insect survives), while the contiguous head/thorax remains supercooled. These findings lead to the following evolutionary and trans-disciplinary questions. Is vitrification an adaptation? What is the selective advantage of compartmentalizing ice between body sections of an individual insect? Is this new overwintering strategy an example of a species transitioning between either becoming exclusively freeze avoiding or free tolerant? Applying new understanding of mechanisms of insect vitrification and avoidance of devitrification to cryomedicine may extend preservation of human tissues and organs. Similarly, for physical and material scientists, by understanding the patterns of ice formation within insects that tolerate, inhibit, and/or impede ice formation below the homogeneous ice nucleation temperature of water (-40�C), new biomimetic possibilities can be envisioned.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2009
    Date
    2009
    Type
    Dissertation
    Collections
    Biological Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.