• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    ATP-Dependent Chromatin Remodeling Complexes In Xenopus Development

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brown_E_2010.pdf
    Size:
    1.745Mb
    Format:
    PDF
    Download
    Author
    Brown, Elvin E.
    Chair
    Krebs, Jocelyn E.
    Drew, Kelly
    Keyword
    Molecular biology
    Developmental biology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9047
    Abstract
    A central question in the study of vertebrate development is how to account for the exquisite interplay of genes within differentiating cells and of groups of cells as they create the organs of the vertebrate embryo. Recently it has become clear that gene regulation by epigenetic processes adds a formerly unappreciated level of complexity to the regulatory network of development. One form of epigenetic gene regulation is embodied in ATP-dependent chromatin remodeling complexes, which use the energy of ATP hydrolysis to alter the interactions of DNA and histones. Chromatin remodeling complexes can both promote and repress expression of a gene at the appropriate time and place in vertebrate development. The list of their known roles in development is long and growing. Here I have studied the developmental role of CHRAC17, a subunit of the CHRAC and ATAC complexes, by visualizing its expression and by ablating CHRAC17 function in Xenopus laevis embryos. Whole mount in situ hybridization localized CHRAC17 expression to the neural tube, cranial placodes, and myotomes. Loss of CHRAC17 function following injection of embryos with CHRAC17-specific morpholino oligonucleotides resulted in abnormal development in the neural tube, eyes, notochord, and pharyngeal pouches, underlining the critical importance of CHRAC17 function in Xenopus development. Similarly, ablating the function of CHD4, the ATPase motor of the NuRD chromatin remodeling complex, resulted in severe developmental abnormalities in early Xenopus development.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2010
    Date
    2010
    Type
    Dissertation
    Collections
    Chemistry and Biochemistry

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.