• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Idealized Modeling Of Circulation Under Landfast Ice

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kasper_J_2010.pdf
    Size:
    3.244Mb
    Format:
    PDF
    Download
    Author
    Kasper, Jeremy Lucas
    Chair
    Weingartner, Thomas
    Committee
    Gradinger, Rolf
    Hedstrom, Katherine
    Johnson, Mark
    Kowalik, Zygmunt
    Keyword
    Physical oceanography
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9084
    Abstract
    Idealized analytical and numerical models are used to elucidate the effects of a spatially variable landfast ice cover on under-ice circulation. Three separate forcing mechanisms are investigated; lateral inflow onto an ice-covered shelf (an elevated sea level at the western boundary), a spatially uniform upwelling wind blowing along the seaward landfast ice edge and a buoyant inflow under the ice cover that enters the domain through the southern coastal wall. The idealized models are configured to resemble the shallow Alaskan Beaufort Sea shelf. Models show that the inclusion of landfast ice means shelf response is substantially different from an ice-free shelf. In the case of a lateral inflow, landfast ice spreads the inflow offshore (in a manner similar to bottom friction) but the change in surface stress across the ice edge (from ice-covered to ice-free) limits the offshore spreading. In the case of an upwelling wind along the ice edge, the low sea level at the ice edge (due to ice edge upwelling) leads to a cross-shore sea level slope between the coast (high sea level) and the ice edge (low sea level), which drives a geostrophically balanced flow upwind. In the absence of along-shore changes in wind or ice the circulation does not vary along the shelf and currents near the coast are O(10 -3) m s-1. Along- and cross-shore variations in the ice-ocean friction coefficient introduce differences in the response time of the under-ice flow and can lead to along-shore sea level slopes, which drive along-shore flows near the coast (< 0.06 m s-1). In the case of a time dependent buoyant inflow, the landfast ice spreads the buoyant inflow much farther offshore (~ 9 times the local baroclinic Rossby radius, ~ 45 km) than in the ice-free case (< 30 km). When the ice width is finite, the change in surface across the ice edge acts to restrict offshore flow (in the anti-cyclonic bulge) and inhibits onshore flow farther downstream.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2010
    Date
    2010
    Type
    Dissertation
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.