• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Modeling Biosorption Of Cadmium, Zinc And Lead Onto Native And Immobilized Citrus Peels In Batch And Fixed Bed Reactors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Chatterjee_A_2012.pdf
    Size:
    4.916Mb
    Format:
    PDF
    Download
    Author
    Chatterjee, Abhijit
    Chair
    Schiewer, Silke
    Committee
    Barnes, Dave
    Johnson, Ron
    Tainor, Tom
    Keyword
    Environmental engineering
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9163
    Abstract
    Biosorption, i.e., the passive uptake of pollutants (heavy metals, dyes) from aqueous phase by biosorbents, obtained cheaply from natural sources or industrial/agricultural waste, can be a cost-effective alternative to conventional metal removal methods. Conventional methods such as chemical precipitation, membrane filtration or ion exchange are not suitable to treat large volumes of dilute discharge, such as mining effluent. This study is a continuation of previous research utilizing citrus peels for metal removal in batch reactors. Since fixed bed reactors feature better mass transfer and are typically used in water or waste water treatment using ion-exchange resins, this thesis focuses on packed bed columns. A number of fixed bed experiments were conducted by varying Cd inlet concentration (5-15 mg/L), bed height (24-75 cm) and flow rate (2-15.5 ml/min). Breakthrough and saturation uptake ranged between 14-29 mg/g and 42-45 mg/g respectively. An empty bed contact time of 10 minutes was required for optimum column operation. Breakthrough curves were described by mathematical models, whereby three popular models were shown to be mathematically identical. Citrus peels were immobilized within an alginate matrix to produce uniform granules with higher uptake capacity than raw peels. All breakthrough curves of native and immobilized peels were predicted using external and intra-particle mass transfer resistances from correlations and batch experiments, respectively. Several analogous mathematical models were identified; other frequently used models were shown to be the approximate derivatives of a single parent model. To determine the influence of competing metals, batch and fixed bed experiments were conducted in different binary combinations of Pb, Cd, Zn and Ca. Equilibrium data were analyzed by applying competitive, uncompetitive and partially competitive models. In column applications, high affinity Pb replaced previously bound Zn and Cd in Pb-Zn and Pb-Cd systems, respectively. However, the Cd-Zn system did not show any overshoot. Calcium, which is weakly bound, did not affect target metal binding as much as other metals. Saturated columns were desorbed with 0.1 N nitric acid to recover the metal, achieving concentration factors of 34-129. Finally, 5 g of citrus peels purified 5.40 L mining wastewater.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2012
    Date
    2012
    Type
    Dissertation
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.