• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Analysis Of Methods For Solar Wind Propagation From Lagrangian Point L1 To Earth

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jensen_P_2013.pdf
    Size:
    4.949Mb
    Format:
    PDF
    Download
    Author
    Jensen, Poul F.
    Chair
    Bristow, William
    Committee
    Newman, David
    Nielsen, Hans
    Otto, Antonius
    Smith, Roger
    Keyword
    Plasma physics
    Electromagnetics
    Astrophysics
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9185
    Abstract
    The Lagrangian point L1 is situated about 1.5 million kilometers sunwards from Earth and provides a unique orbiting point for satellites, placing them constantly upstream in the solar wind, allowing for prediction of solar wind conditions impacting Earth's magnetosphere. Short-term forecasting of geomagnetic activity requires extrapolation of solar wind data from L1 to Earth (typical propagation time around 1 hour), as does any research in interactions between the solar wind and the magnetosphere during intervals when no Earth-orbiting satellites are in the solar wind. To accurately predict propagation delays it is necessary to take the geometry of incoming solar wind structures into account. Estimating the orientation of solar wind structures currently has to be done using single satellite measurements, which will likely remain the case for another decade or more, making it important to optimize single satellite techniques for solar wind propagation. In this study a comprehensive analysis of 8 different single satellite propagation methods was performed, each involving several variable parameters. 4 of these used electric field calculations and had not previously been tested for solar wind propagation. Large amounts of data were propagated from a satellite near L1 to target satellites near Earth for comparison to measured data, using specific test scores to evaluate relative performance between methods and parameter values. Electric field methods worked well for continuous data but did not predict arrival time of discontinuities (abrupt transitions) as accurately as methods based on magnetic field data, one of which delivered the best results on all accounts. This method had also been found to give best results in a previous study, but optimal parameter values were significantly different with the larger data set used here. Propagating 6,926 discontinuities it was found that on average they arrive about 30 seconds later than predicted (about 1% of the propagation time). Barring a systematic error in velocity data or delay calculations the offset suggests an asymmetry in the geometry of solar wind structures. While this idea is physically plausible it was not unambiguously supported by the data.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2013
    Date
    2013
    Type
    Dissertation
    Collections
    Physics

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.