• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Nitrogen Dynamics Through The Forest Floor Of Two Interior Alaska Black Spruce Ecosystems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Weber_M_1982.pdf
    Size:
    2.374Mb
    Format:
    PDF
    Download
    Author
    Weber, Michael Gunter
    Keyword
    Forestry
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9311
    Abstract
    Nitrogen flow in the forest floor of two interior Alaska black spruce (Picea mariana (Mill.) B.S.P.) ecosystems was investigated and related to environmental constraints unique to the area, specifically temperature, moisture, and organic matter quality (C/N ratio). Pools examined were NH(,4)-N, NO(,3)-N, soluble organic N, total (Kjeldahl) and residual organic N. Low addition levels of high enrichment isotope (< 1% of the total nitrogen pool wth 99 atom percent excess ('15)N) were used to describe nitrogen dynamics through pools of selected forest floor components of permafrost-free and permafrost-dominated black spruce sites. A thick carpet of mosses, made up primarily of the feather moss species Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (B.S.C.) Mitt. played a vital role in the nitrogen economy of the forest floor. Nitrogen, quickly immobilized in the moss layers (green, brown) and retained there, was released very slowly and sequestered in the fermentation and humus layers (021 + 022) where most of the vascular plant roots were located. Vascular understory ('15)N uptake was minimal as was ('15)N export via the soil solution. Periodic mineralization episodes, more frequent and dynamic at the permafrost-free site (where C/N ratios were lower), were largely restricted to the moss layers since available N pools in deeper forest floor layers incorporated little label over the three year period. It proved difficult to separate the effects of rainfall events from that of forest floor temperature fluctuations upon seasonal nitrogen dynamics. In the lower layers of the forest floor temperature and/or moisture rather than organic matter quality appeared to be the overriding factor controlling N flow. The dominance in pool size of NH(,4)-N over NO(,3)-N is discussed with reference to current theories of ecosystem strategy.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1982
    Date
    1982
    Type
    Dissertation
    Collections
    Older Theses Not Clearly Affiliated with a Current College
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.