• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Fisheries and Ocean Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Fisheries and Ocean Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Numerical modeling study of the circulation in the Gulf of Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bang_I_1991.pdf
    Size:
    4.166Mb
    Format:
    PDF
    Download
    Author
    Bang, Inkweon
    Keyword
    Physical oceanography
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9315
    Abstract
    A series of numerical experiments are performed to simulate the Gulf of Alaska circulation and to examine the dynamical ocean response to the annual mean and seasonal forcing using a primitive equation model (Semtner 1974). The model domain encompasses the North Pacific north of 45$\sp\circ$ N and east of 180$\sp\circ$ and is surrounded by artificial walls in the south and west. Biharmonic diffusion is used in the interior to excite mesoscale eddies. A sponge layer with high Laplacian diffusion is incorporated near the western boundary. Horizontal resolution of 30$\sp\prime$ x 20$\sp\prime$ and 20 vertical levels are used to resolve the mesoscale topography and eddies. Wind stress computed from sea level atmospheric pressure and temperature and salinity data of Levitus (1982) are used. A diagnostic model produces a circulation in the Gulf of Alaska which agrees with observed patterns. In a three-layer flat-bottom baroclinic model, baroclinic Rossby waves propagate at 0.8 cm/sec and it takes a decade for spin-up to be completed. Baroclinic models forced by the annual mean wind and thermohaline forcings show the generation of eddies by baroclinic instability. The eddies in the flat-bottom model have a period of 75 days and are interpreted as barotropic Rossby waves. In the model with topography, the period of dominant eddies is 3-4 years and they are interpreted as baroclinic Rossby waves. Anticyclonic eddies near Sitka show similar characteristics as the Sitka eddy. They propagate westward and cause meanders in the Alaska Stream near Kodiak Island. The abnormal shift of the Alaska gyre in 1981 is probably due to the presence of one of these anticyclonic eddies. A flat-bottom model with seasonal forcing shows a large seasonal variability. When bottom topography is present, however, seasonal response is greatly reduced due to the dissipation of barotropic response by bottom topography. The seasonal baroclinic model shows a similar seasonal variability to the seasonal barotropic model indicating that the seasonal response is mainly barotropic. Eddies are also excited in the seasonal case and are almost identical to those of the annual mean case.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1991
    Date
    1991
    Type
    Dissertation
    Collections
    College of Fisheries and Ocean Sciences
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.