• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    A theoretical study of magnetosphere-ionosphere coupling processes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Cao_F_1991.pdf
    Size:
    4.460Mb
    Format:
    PDF
    Download
    Author
    Cao, Fei
    Chair
    Kan, J. R.
    Committee
    Akasofu, S-I.
    Biswas, N.
    Shaw, G.
    Swift, D.
    Keyword
    Geophysics
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9317
    Abstract
    Magnetosphere and ionosphere are coupled electrodynamically by waves, field-aligned currents and parallel electric fields. Several fundamental coupling processes are addressed in my thesis. It is shown that the Alfven wave is the dominant mode in transmitting field-aligned currents. Therefore, dynamic M-I coupling can be modeled by the Alfven wave bouncing between the ionosphere and the magnetospheric boundaries. The open magnetopause, separating the solar wind and the magnetosphere, behaves like a near perfect reflector to the Alfven wave because of the large solar wind inertia. At the plasma sheet, however, the reflection coefficient may extend over a wide range, depending on the location in the plasma sheet. As the Alfven wave propagates back and forth between the magnetosphere and ionosphere, the field-aligned current density increases dramatically at certain locations, especially near the head of the westward traveling surge, causing potential drops to develop along magnetic field lines. It is found that the existence of parallel potential drops can distort the global convection pattern and limit the upward field-aligned current. The magnetic reconnection at the dayside magnetopause is responsible for enhancing the convection in the magnetosphere, which subsequently propagates toward the ionosphere by the Alfven wave. The patchy and intermittent reconnection at the dayside magnetopause can be initiated by the 3-D tearing instability, leading to the isolated magnetic islands and X-line segments. The nonlinear evolution of tearing in terms of the magnetic island coalescence is also studied.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1991
    Date
    1991
    Type
    Dissertation
    Collections
    Physics

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.