• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Geochemical studies of fumarolic systems in the eastern Aleutian Volcanic Arc: Applications for understanding magmatic and volcanic processes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kodosky_L_1992.pdf
    Size:
    4.659Mb
    Format:
    PDF
    Download
    Author
    Kodosky, Lawrence Gerard
    Chair
    Keskinen, Mary
    Newberry, Rainer
    Committee
    Kienle, Juergen
    Keith, Terry
    Layer, Paul
    Keyword
    Geochemistry
    Geology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9380
    Abstract
    Geochemical studies of active and fossil fumaroles were conducted at Mount St. Augustine and the Valley of Ten Thousand Smokes (VTTS) to investigate fumarolic systems for providing information on volcanic and magmatic processes. Gases and condensates collected from high-temperature rooted fumaroles at Mount St. Augustine in 1979, 1982, and 1984 are characterized by systematic long-term trends in gas composition and stable isotopes that can be best explained by progressive magmatic outgassing coupled with increasing proportions of seawater in the fumarolic emissions. Seawater-magma interaction may initiate some of the early explosive phases of Mount St. Augustine eruptions. The distribution and morphology of rootless fumaroles formed on pyroclastic flows and a lava flow emplaced during the 1986 eruptive cycle of Mount St. Augustine were controlled by pre-eruption drainage and topography, as well as by the thickness, compaction, and settling of the flow deposits. The majority of chemical components present in encrustations collected from these active fumaroles were derived by acidic condensate leaching of the eruptive deposits. Trace-element distribution apparently followed a pattern of isomorphic substitution in the encrustation phases. A reconnaissance survey of surface Hg$\sp\circ$ contents in the VTTS supports the presence of a shallow intrusion beneath the dome-like feature known as the Turtle. Based on the Hg$\sp\circ$ data, the preferred model of the 1912 Novarupta vent is one generated by collapse of supporting vent walls into a cored-out explosive vent after the major eruptive phase. Vent morphology is funnel-like with subsidence concentrated in the narrow funnel center. The magnitude of the Novarupta Basin Hg$\sp\circ$ anomalies implies that a shallow ($\approx$1 km depth) incipient hydrothermal system has developed beneath the vent.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1992
    Date
    1992
    Type
    Dissertation
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.