• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Liberal Arts
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Liberal Arts
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Transfer and Steenrod squares

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Litvanyi_P_1993.pdf
    Size:
    2.139Mb
    Format:
    PDF
    Download
    Author
    Litvanyi, Peter Ivo
    Chair
    Piacenza, Robert
    Keyword
    Mathematics
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9385
    Abstract
    Commutators between the transfer and Steenrod squares have been investigated by several authors. Let X be a finite simplicial complex and $\tau$ be a regular involution on X. If $\tau$ has no fixed point, then the commutator is trivial by certain results in generalized cohomology theory. For involutions with possible fixed points, the commutator was first expressed by Bott as $\Delta\sp*$Sq$\sp{\rm i}$ + Sq$\sp{\rm i}\Delta\sp* = \mu$Sq$\sp{\rm i-1}\Delta\sp*.$ Here $\Delta\sp*$ is the transfer map and $\mu$ denotes the connecting morphism of the Smith sequence. Another formula, closely related to the one above, was given by Kubelka and gives the commutator in terms of the cohomology class restricted to the fixed point set and certain characteristic classes arising from the double cover of the complement to the fixed point set. In this thesis, I prove the generalization of the formulas above for sheaf cohomology. As one of the consequences, due to the powerful nature of sheaf theory we gain the results without serious restrictions on the space: X is required to be paracompact, Hausdorff. In Chapter 1, I review the standard sheaf-theoretical constructions for both the transfer and the Steenrod powers based on Bredon's results. I state and prove a few technical lemmas on Smith sequences that are necessary in my setting. In Chapter 2, I state and prove the analogue of Bott's formula for paracompact Hausdorff spaces. In Chapter 3, we derive a generalization of Kubelka's formula for spaces as above.
    Description
    Thesis (Ph.D.) University of Alaska Fairbanks, 1993
    Date
    1993
    Type
    Thesis
    Collections
    College of Liberal Arts
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2021 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.