• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    A simulation study of three-dimensional magnetic reconnection

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ma_Z_1994.pdf
    Size:
    2.917Mb
    Format:
    PDF
    Download
    Author
    Ma, Zhi-Wei
    Chair
    Lee, L. C.
    Committee
    Kan, J. R.
    Shaw, G. E.
    Smith, R. W.
    Hawkins, J. G.
    Keyword
    Astronomy
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9389
    Abstract
    The magnetic reconnection process plays an important role in the interaction between the solar wind and the magnetosphere. It leads to the transfer of energy from the solar wind into the magnetosphere. In this thesis, we study three-dimensional (3D) aspects of magnetic reconnection based on magnetohydrodynamic (MHD) simulations. First, we examine the magnetic field topology of magnetic flux ropes formed in multiple X line reconnection (MXR). It is found that the magnetic field topology depends on the relative extent and location of the two neighboring X lines. Magnetic flux ropes with either smooth or frayed ends are obtained in our simulations. For magnetic flux ropes with smooth ends, a major amount of magnetic flux is connected at each end to only one side of magnetopause. Second, the evolution of the core magnetic field in the magnetic flux tube is studied for various magnetic reconnection processes. We find that the 3D cases always lead to a larger enhancement of core field than the corresponding 2D cases since plasma can be squeezed out of the flux tube in the third direction. The MXR process gives rise to a larger increase of the core field than the single X line reconnection process. The core magnetic field can be enhanced to three times the ambient magnetic field strength in the 3D MXR process. Finally, we examine the generation and propagation of Alfven waves and field-aligned currents in the 3D reconnection process. For cases with a zero guide field, it is found that a large portion of the field-aligned currents ($\sim$40%) is located in the closed field line region. Both the pressure gradient term and inertia term contribute to the generation of field-aligned currents. For cases with nonzero guide field, one sense of field-aligned currents is dominant due to the presence of the initial field-aligned current. In these cases, the inertia term makes a major contribution to the redistribution of field-aligned currents. The influence of the initial guide field on the longitudinal shift of the current reversal site is found to be consistent with observations.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1994
    Date
    1994
    Type
    Dissertation
    Collections
    Physics

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.