• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Climate, seasonal snow cover and permafrost temperatures in Alaska north of the Brooks Range

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zhang_T_1993.pdf
    Size:
    4.968Mb
    Format:
    PDF
    Download
    Author
    Zhang, Tingjun
    Chair
    Osterkamp, T. E.
    Committee
    Bowling, S. A.
    Goering, D.
    Gosink, J.
    Hopkins, D.
    Wendler, G.
    Keyword
    Geophysics
    Mechanical engineering
    Physical geography
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9407
    Abstract
    Climatological data, active layer and permafrost measurements, and modeling were used to investigate the response of permafrost temperatures to changes in climate in Alaska north of the Brooks Range. Mean annual air temperature (MAAT) from 1987 to 1991 within about 110 km from the Arctic Coast was ${-12.4}\pm0.3\sp\circ C,$ while the mean annual permafrost surface temperature (MAPST) ranged from ${-9.0}\sp\circ C$ along the coast to ${-5.2}\sp\circ C$ inland. Air temperature changes alone can not explain the permafrost warming from the coast to inland. Measurements show that MAPST are about $3\sp\circ C$ to $6\sp\circ C$ warmer than MAAT in the region. The interaction of local microrelief and vegetation with snow appears to change the insulating effect of seasonal snow cover and may be the major factor which controls the permafrost temperature during the winter and thus the MAPST. Sensitivity analyses show that for the same MAAT conditions, changes in seasonal snow cover parameters can increase or decrease the MAPST about $7\sp\circ C.$ Snowfall was greater during the cold years and less during the warm years and was poorly correlated between stations. These results suggest that the effects of changes in air temperatures on permafrost temperatures historically may also have been modified by changes in snow cover. A numerical model was used to investigate the effect of changes in initial permafrost temperature conditions, MAAT, seasonal snow cover and thermal properties of soils on the permafrost temperatures. Permafrost may have started warming about the same time as the atmosphere did in the late 1800's, and the long term mean surface temperature of the permafrost may have been established prior to this time. Variations in the penetration depth of the warming signal may be related to differences in thermal properties of permafrost. Variations in the magnitude of the permafrost surface warming may be due to the effect of local factors such as soil type, vegetation, microrelief, soil moisture, and seasonal snow cover. The effect of the interaction of vegetation and snow cover may amplify the signal of temperature change in the permafrost.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1993
    Date
    1993
    Type
    Dissertation
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.