• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Soil consumption of atmospheric methane: Importance of microbial physiology and diversity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Gulledge_J_1996.pdf
    Size:
    1.914Mb
    Format:
    PDF
    Download
    Author
    Gulledge, Jay Michael
    Keyword
    Ecology
    Microbiology
    Biogeochemistry
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9424
    Abstract
    Recently, atmospheric CH$\sb4$ concentration has risen dramatically, apparently due to human activities. Since is CH$\sb4$ is involved in several atmospheric processes that regulate Earth's climate, it is important that we understand the factors that control its atmospheric concentration. One such factor is biological CH$\sb4$ consumption in well-drained soils. Although this sink may comprise nearly one-tenth of the annual destruction of atmospheric CH$\sb4$, We know relatively little about it. I conducted a research project to investigate the influences of CH$\sb4$ supply, soil moisture, dissolved salts, and NH$\sb4\sp+$-fertilizer on the activity of soil CH$\sb4$ oxidizers. When starved of CH$\sb4$, two upland taiga soils gradually lost their capacities to oxidize CH$\sb4$, indicating that the process was not merely fortuitous, and that the organisms involved were truly methanotrophic. The relationship between soil moisture and CH$\sb4$ consumption was parabolic, with maximum oxidation occurring at a moisture level that achieved the maximum possible CH$\sb4$ diffusion rate, while minimizing water stress on the methanotrophs. Optimal soil moisture occurred in a relatively narrow range among an array of physically dissimilar soils, providing that moisture content was expressed as a percentage of the water holding capacity fo a particular soil, rather than as absolute water content. In recent years, one of the most intensely investigated controls on soil CH$\sb4$ consumption has been its inhibition by NH$\sb4\sp+$-fertilizer. In addition to NH$\sb4\sp+,$ however, I found that other ions inhibited CH$\sb4$ oxidation. In some soils non-NH$\sb4\sp+$ ions were so toxic that they completely masked the NH$\sb4\sp+$ effect. It is crucial, therefore, to control for salt effects when investigating NH$\sb4\sp+$-inhibition. In both field and laboratory experiments, CH$\sb4$ consumption in a birch soil was sensitive to NH$\sb4\sp+$, whereas a spruce soil was unaffected. In the birch soil, NH$\sb4\sp+$ apparently inhibited methanotroph growth, rather than enzymatic CH$\sb4$ oxidation, whereas methanotrophs in the spruce soil were apparently insensitive to NH$\sb4\sp+$. These results suggest that the primary landscape-level control over the response of soil CH$\sb4$ consumption to NH$\sb4\sp+$-fertilization is the cross-site distribution of physiologically distinct CH$\sb4$ oxidizers.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1996
    Date
    1996
    Type
    Dissertation
    Collections
    Older Theses Not Clearly Affiliated with a Current College
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.