• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Hydrothermal history of the Long Valley Caldera, California: Life after collapse

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    McConnell_V_1995.pdf
    Size:
    5.956Mb
    Format:
    PDF
    Download
    Author
    Mcconnell, Vicki Sue
    Keyword
    Geology
    Geochemistry
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9442
    Abstract
    Drilling of the Long Valley Exploratory Well (LVEW) on the resurgent dome in the 760 ka Long Valley Caldera opened a window to view the geologic history of the central caldera. Stratigraphic relationships indicate piston/cylinder (Valles-type) collapse for this caldera, and a resurgent structure intimately linked to post-caldera-collapse rhyolitic intrusions. Samples recovered from this and other wells proximal to the resurgent dome were characterized through isotope microanalytical techniques, petrographic and microprobe study, and analysis of fluid inclusions within alteration minerals. This work revealed the complexity of primary magmatic and secondary hydrothermal activity involved in the formation of a resurgent dome. Measurements of the $\rm\delta\sp{18}O$ composition of silicate components forming the intracaldera lithologies display disequilibrium within samples as a result of variable exchange with hydrothermal fluids. A maximum calculated temperature of $350\sp\circ\rm C$ at 1800 m depth in LVEW indicates paleohydrothermal temperatures exceeded the known present-day hydrothermal conditions by more than $100\sp\circ\rm C.$ Contouring of $\rm\delta\sp{18}O$ values from wells on a line crossing the caldera define a pattern of convective flow with upwelling beneath the resurgent dome. Although surface volcanism at the LVEW site ended about 650 ka, laser probe $\rm\sp{40}Ar/\sp{39}Ar$ microanalysis of samples from sill-like intrusions into the intracaldera ignimbrite reveals intrusive events at ${\sim}650$ ka, ${\sim}450$ ka, and ${\sim}350$ ka. Sanidine phenocrysts from the Bishop Tuff at 1772 and 1792 m depths and whole rock samples of the Mesozoic metavolcanic basement rocks at 1957 m depth record times of disturbance by hydrothermal pulses at ${\sim}530$ ka and ${\sim}350$ ka. Repeated emplacement of intrusions into the centrally located caldera ignimbrite was a primary process of resurgence. In turn, the feeders for the intrusions and the intrusions themselves supplied heat for resurgent-dome-centered hydrothermal flow. After approximately 300 ka, all activity shut off in the central caldera only to resume at ${\sim}40$ ka in response to renewed Holocene volcanic activity in the West Moat. Geophysical evidence of recent intrusive activity beneath the resurgent dome indicates this shallow magma emplacement mechanism is not totally extinct in the central caldera. Most likely a new cycle of volcanism and hydrothermal circulation is underway as the caldera matures.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1995
    Date
    1995
    Type
    Dissertation
    Collections
    Older Theses Not Clearly Affiliated with a Current College
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.