• Aboveground Biomass Equations for the Trees of Interior Alaska

      Yarie, John; Kane, Evan; Mack, Michelle (School of Agriculture and Land Resources Management, Agricultural and Forestry Experiment Station, 2007-01)
      Calculation of forest biomass requires the use of equations that relate the mass of a tree or it's components to physical measurements that are relatively easy to obtain. In the literature individual tree relationships have been reported that estimate aboveground biomass on individual sites (e.g. Barney and Van Cleve 1973)and over large landscape areas where many data sets are combined (Jenkins et al. 2003). The equations presented in this report represent a compilation of aboveground biomass data collected within interior Alaska over the past 40 years.
    • Cofiring coal and biomass at Aurora Power Plant in Fairbanks, Alaska

      Wright, Zackery; Huang, Daisy; Nicholls, David; Peterson, Rorik; Schnabel, William (2016-05)
      Biomass energy has been a topic of great interest over the previous few years in Alaska; especially when various fuel sources were priced at a record high. Interior Alaska has the potential to utilize woody biomass to offset the use of coal in many of its power generating facilities. In this study, woody biomass in the form of clean aspen (Populus tremuloides) chips was cofired with Usibelli coal at the Aurora Power Plant facility in downtown Fairbanks, Alaska. Biomass was successfully cofired at low average rates of 2.4% and 4.81% of total energy value. Combustion gasses were analyzed using measuring probes in the exhaust stack. The 2.4% biomass test saw, on average, an increase in CO and CO₂ by 95ppm and 2%, respectively. A decrease in NOx of 1ppm was observed. During the 4.81% biomass test, CO increased by 83ppm, NOx decreased by 18ppm, and CO decreased by 1%. Opacity increased by 0.1% during the 2.4% biomass test and 0.17% during the 4.81% biomass test. The challenges facing a small scale facility in Interior Alaska are also presented. The testing exemplified that the use of biomass in stoker/grate boilers in Alaska is technically feasible with relative ease. No technical barriers to cofiring at low levels on an on-going basis were found at the Aurora Power Plant and this conclusion would likely hold true at similar facilities in interior Alaska.