• Analysis and evaluation of fragment size distributions in rock blasting at the Erdenet Mine

      Dondov, Erdenebaatar; Дондов, Эрдэнэбаатар; Chen, Gang; Ghosh, Tathagata; Ganguli, Rajive (2015-08)
      Rock blasting is one of the most important operations in mining. It significantly affects the subsequent comminution processes and, therefore, is critical to successful mining productions. In this study, for the evaluation of the blasting performance at the Erdenet Mine, we analyzed rock fragment size distributions with the digital image processing method. The uniformities of rock fragments and the mean fragment sizes were determined and applied in the Kuz-Ram model. Statistical prediction models were also developed based on the field measured parameters. The results were compared with the Kuz-Ram model predictions and the digital image processing measurements. A total of twenty-eight images from eleven blasting patterns were processed, and rock size distributions were determined by Split-Desktop program in this study. Based on the rock mass and explosive properties and the blasting parameters, the rock fragment size distributions were also determined with the Kuz-Ram model and compared with the measurements by digital image processing. Furthermore, in order to improve the prediction of rock fragment size distributions at the mine, regression analyses were conducted and statistical models w ere developed for the estimation of the uniformity and characteristic size. The results indicated that there were discrepancies between the digital image measurements and those estimated by the Kuz-Ram model. The uniformity indices of image processing measurements varied from 0.76 to 1.90, while those estimate by the Kuz-Ram model were from 1.07 to 1.13. The mean fragment size of the Kuz-Ram model prediction was 97.59% greater than the mean fragment size of the image processing. The multivariate nonlinear regression analyses conducted in this study indicated that rock uniaxial compressive strength and elastic modulus, explosive energy input in the blasting, bench height to burden ratio and blast area per hole were significant predictor variables in determining the fragment characteristic size and the uniformity index. The regression models developed based on the above predictor variables showed much closer agreement with the measurements.