• Predatory Hymenopteran assemblages in boreal Alaska: associations with forest composition and post-fire succession

      Wenninger, Alexandria; Wagner, Diane; Hollingsworth, Teresa; Skies, Derek (2018-05)
      Predatory Hymenoptera play key roles in terrestrial foodwebs and affect ecosystem processes, but their assemblage composition and distribution among forest habitats are poorly understood. Historically, the boreal forest of interior Alaska has been characterized by a fire disturbance regime that maintains vegetation composition dominated by black spruce forest. Climate-driven changes in the boreal fire regime have begun to increase the occurrence of hardwood species in the boreal forest, including trembling aspen and Alaska paper birch. Replacement of black spruce forests with aspen forests may influence predatory hymenopteran assemblages due to differences in prey availability and extrafloral nectar provisioning. Furthermore, changes in the frequency and extent of boreal forest fires increase the proportion of forests in earlier successional stages, altering habitat structure. The primary goal of this study was to characterize predatory hymenopteran assemblages in post-fire boreal forests of interior Alaska. To investigate this, the abundance, species richness, and composition of predatory hymenopteran assemblages were compared among forests at different stages of succession that were dominated by black spruce pre-fire, but that vary in their tree species composition post-fire. Predatory hymenopterans were separated into three groups: ants, macropterous wasps, and micropterous wasps. Ant species richness and abundance were not related to forest composition, but both were significantly higher in early-successional forests than in mid-late successional forests. In contrast, macropterous wasp morphospecies richness and abundance, as well as micropterous wasp abundance, were positively related to the basal area of aspen, suggesting that aspen forests benefit macropterous and micropterous wasps, perhaps due to extrafloral nectar provisioning and the availability of greater quality prey than is provided by black spruce. Wasp assemblages did not differ between successional stages. This study is the first to characterize the influence of post-fire succession on predatory hymenopteran assemblages of the boreal forest at a large spatial scale. The results suggest that continued warming of the boreal forest will have cascading influences on the insect assemblages of boreal Alaska.
    • The snowshoe hare filter to spruce establishment in boreal Alaska

      Olnes, Justin; Kielland, Knut; Ruess, Roger; Juday, Glenn; Genet, Helene; Mann, Daniel (2018-05)
      Interior Alaska is a heterogeneous landscape within the circumpolar boreal forest and is largely composed of black and white spruce (Picea mariana and P. glauca). Improving our understanding of the factors affecting patterns in spruce regeneration is particularly important because these factors ultimately contribute to shaping the boreal forest vegetation mosaic. Herbivory by snowshoe hares (Lepus americanus) is one factor that likely drives patterns in spruce establishment. The interaction between spruce and snowshoe hares provides an opportunity to study how plant-herbivore interactions can affect succession, vegetation community composition, and consequently, how herbivory influences landscape heterogeneity. I explored how herbivory by snowshoe hares alters the survival and growth of spruce seedlings across Interior Alaska's boreal forest. I hypothesized that the survival and growth rate of regenerating spruce is significantly reduced by snowshoe hare herbivory and that snowshoe hare herbivory influences the pattern of spruce establishment across time and space. To address this hypothesis, I conducted research in three distinct vegetation communities across the region: productive lowland floodplains (Chapters 1 and 2), treeline (Chapters 3 and 4), and recently burned stands of black spruce (Chapter 5). Together these five chapters reveal that snowshoe hares affect spruce establishment across much of boreal Alaska. Where and when hares are abundant, spruce can be heavily browsed, resulting in suppressed seedling growth and increased seedling mortality. The results of these studies also reveal a consistent and predictable pattern in which this plant-herbivore interaction takes place. The snowshoe hare filter acts as a 'spatially aggregating force' to spruce establishment, where the potential for optimal regeneration is highest during periods of low hare abundance and where hares are absent from the landscape.