• Arctic sea ice trafficability: new strategies for a changing icescape

      Dammann, Dyre Oliver; Eicken, Hajo; Mahoney, Andrew R.; Meyer, Franz J.; Bhatt, Uma S.; Meek, Chanda L. (2017-08)
      Sea ice is an important part of the Arctic social-environmental system, in part because it provides a platform for human transportation and for marine flora and fauna that use the ice as a habitat. Sea ice loss projected for coming decades is expected to change ice conditions throughout the Arctic, but little is known about the nature and extent of anticipated changes and in particular potential implications for over-ice travel and ice use as a platform. This question has been addressed here through an extensive effort to link sea ice use and key geophysical properties of sea ice, drawing upon extensive field surveys around on-ice operations and local and Indigenous knowledge for the widely different ice uses and ice regimes of Utqiaġvik, Kotzebue, and Nome, Alaska. A set of nine parameters that constrain landfast sea ice use has been derived, including spatial extent, stability, and timing and persistence of landfast ice. This work lays the foundation for a framework to assess and monitor key ice-parameters relevant in the context of ice-use feasibility, safety, and efficiency, drawing on different remote-sensing techniques. The framework outlines the steps necessary to further evaluate relevant parameters in the context of user objectives and key stakeholder needs for a given ice regime and ice use scenario. I have utilized this framework in case studies for three different ice regimes, where I find uses to be constrained by ice thickness, roughness, and fracture potential and develop assessment strategies with accuracy at the relevant spatial scales. In response to the widely reported importance of high-confidence ice thickness measurements, I have developed a new strategy to estimate appropriate thickness compensation factors. Compensation factors have the potential to reduce risk of misrepresenting areas of thin ice when using point-based in-situ assessment methods along a particular route. This approach was tested on an ice road near Kotzebue, Alaska, where substantial thickness variability results in the need to raise thickness thresholds by 50%. If sea ice is thick enough for safe travel, then the efficiency of travel is relevant and is influenced by the roughness of the ice surface. Here, I develop a technique to derive trafficability measures from ice roughness using polarimetric and interferometric synthetic aperture radar (SAR). Validated using Structure-from-Motion analysis of imagery obtained from an unmanned aerial system near Utqiaġvik, Alaska, I demonstrate the ability of these SAR techniques to map both topography and roughness with potential to guide trail construction efforts towards more trafficable ice. Even when the ice is sufficiently thick to ensure safe travel, potential for fracturing can be a serious hazard through the ability of cracks to compromise load-bearing capacity. Therefore, I have created a state-of-the-art technique using interferometric SAR to assess ice stability with capability of assessing internal ice stress and potential for failure. In an analysis of ice deformation and potential hazards for the Northstar Island ice road near Prudhoe Bay on Alaska's North Slope I have identified a zone of high relative fracture intensity potential that conformed with road inspections and hazard assessments by the operator. Through this work I have investigated the intersection between ice use and geophysics, demonstrating that quantitative evaluation of a given region in the ice use assessment framework developed here can aid in tactical routing of ice trails and roads as well as help inform long-term strategic decision-making regarding the future of Arctic operations on or near sea ice.
    • An evaluation of GPR techniques for analyzing the safety of Interior Alaskan ice roads under varying river ice and environmental conditions

      Richards, Elizabeth M.; Stuefer, Svetlana; Maio, Chris; Belz, Nathan; Daanen, Ronald (2021-05)
      Ice roads and bridges are necessary routes to transport heavy equipment, supplies and food in the winter months to and from isolated cold region communities off the road system. Ice roads allow for community members to avoid the high costs of air shipments and obtain equipment and vehicles that would otherwise not be available. These ice roads traverse frozen bodies of water (e.g., rivers, estuaries, and lakes), and require extreme safety when driving over. To achieve this, calculations are frequently completed to determine the maximum acceptable loading on the ice cover. River ice tends to have increased safety concerns and uncertainty for travel that stem from warmer air temperatures and other factors such as precipitation, snow drifting, and ice cover forming differently each year. The necessity of obtaining time intensive ice thickness measurements by hand puts the responsible personnel at considerable risk of injury or fatality. Ground penetrating radar (GPR), which has gained much popularity in the last few decades, is a quicker and more effective non-invasive method for measuring ice thickness and other properties. The GPR system was tested for its accuracy in measuring ice thickness on common transportation routes on the Yukon River and the Tanana River. Identification of varying ice type layers in river ice cover using GPR was also attempted. While layers could not be identified using the 450 MHz and 750 MHz central frequency antennas, an accuracy analysis of GPR ice thickness measurements under various environmental conditions was completed. This analysis contributes to a comprehensive understanding of the safety of ice roads for community members in remote northern villages and provides the basis for further research on identifying layers in river ice cover.