• Statistical analysis of species tree inference

      Dajles, Andres; Rhodes, John; Allman, Elizabeth; Goddard, Scott; Short, Margaret; Barry, Ron (2016-05)
      It is known that the STAR and USTAR algorithms are statistically consistent techniques used to infer species tree topologies from a large set of gene trees. However, if the set of gene trees is small, the accuracy of STAR and USTAR in determining species tree topologies is unknown. Furthermore, it is unknown how introducing roots on the gene trees affects the performance of STAR and USTAR. Therefore, we show that when given a set of gene trees of sizes 1, 3, 6 or 10, the STAR and USTAR algorithms with Neighbor Joining perform relatively well for two different cases: one where the gene trees are rooted at the outgroup and the STAR inferred species tree is also rooted at the outgroup, and the other where the gene trees are not rooted at the outgroup, but the USTAR inferred species tree is rooted at the outgroup. It is known that the STAR and USTAR algorithms are statistically consistent techniques used to infer species tree topologies from a large set of gene trees. However, if the set of gene trees is small, the accuracy of STAR and USTAR in determining species tree topologies is unknown. Furthermore, it is unknown how introducing roots on the gene trees affects the performance of STAR and USTAR. Therefore, we show that when given a set of gene trees of sizes 1, 3, 6 or 10, the STAR and USTAR algorithms with Neighbor Joining perform relatively well for two different cases: one where the gene trees are rooted at the outgroup and the STAR inferred species tree is also rooted at the outgroup, and the other where the gene trees are not rooted at the outgroup, but the USTAR inferred species tree is rooted at the outgroup.