• On the Klein-Gordon equation originating on a curve and applications to the tsunami run-up problem

      Gaines, Jody; Rybkin, Alexei; Bueler, Ed; Nicolsky, Dmitry (2019-05)
      Our goal is to study the linear Klein-Gordon equation in matrix form, with initial conditions originating on a curve. This equation has applications to the Cross-Sectionally Averaged Shallow Water equations, i.e. a system of nonlinear partial differential equations used for modeling tsunami waves within narrow bays, because the general Carrier-Greenspan transform can turn the Cross-Sectionally Averaged Shallow Water equations (for shorelines of constant slope) into a particular form of the matrix Klein-Gordon equation. Thus the matrix Klein-Gordon equation governs the run-up of tsunami waves along shorelines of constant slope. If the narrow bay is U-shaped, the Cross-Sectionally Averaged Shallow Water equations have a known general solution via solving the transformed matrix Klein-Gordon equation. However, the initial conditions for our Klein-Gordon equation are given on a curve. Thus our goal is to solve the matrix Klein-Gordon equation with known conditions given along a curve. Therefore we present a method to extrapolate values on a line from conditions on a curve, via the Taylor formula. Finally, to apply our solution to the Cross-Sectionally Averaged Shallow Water equations, our numerical simulations demonstrate how Gaussian and N-wave profiles affect the run-up of tsunami waves within various U-shaped bays.