• Assessment of LiDAR and spectral techniques for high-resolution mapping of permafrost on the Yukon-Kuskokwim Delta, Alaska

      Whitley, Matthew Allen; Maio, Christopher V.; Frost, Gerald V.; Jorgenson, M. Torre (2017-05)
      The Yukon-Kuskokwim Delta (YKD) is one of the largest and most ecologically productive coastal wetland regions in the pan-Arctic. Formed by the Yukon and Kuskokwim Rivers flowing into the Bering Sea, nearly 130,000 square kilometers of delta support 23,000 Alaskan Natives living subsistence lifestyles. Permafrost on the outer delta commonly occurs on the abandoned floodplain deposits. Ground ice in the soil raises surface elevations on the order of 1-2 meters, creating plateaus on the landscape. Better drainage on the plateaus supports distinct Sphagnum-rich vegetation, which in turn protects the permafrost from rising air temperatures with low thermal conductivity during the summer. This ecosystem-protected permafrost is thus vulnerable to disturbances from rising air temperatures, vegetation mortality, and inland storm surges, which have been known to flood up to 37 km inland. This thesis assesses several novel techniques to map permafrost distribution at high-resolution on the YKD. Accurate baseline maps of permafrost extent are critical for a variety of applications, including long-term monitoring. As air and ground temperatures rise across the Arctic, monitoring landscape change is important for understanding permafrost degradation processes (e.g. thermokarst) and greenhouse gas dynamics from the local to global scales. This thesis separately explored the value of Light Detection And Ranging (LiDAR) and spectral datasets as tools to map permafrost at a high spatial resolution. Furthermore, this thesis sought to automate these processes, with the vision of high-resolution mapping over large spatial extents. Fieldwork was conducted in July 2016 to both parameterize and then validate the mapping efforts. The LiDAR mapping extent assessed a 135 km² area (~15% permafrost cover), and the spectral mapping extent assessed an 8 km² area (~20% permafrost cover). For the LiDAR dataset, the use of a simple elevation threshold informed by field ground truth values provided a permafrost map with 94.9% accuracy. This simple approach was possible because of the extremely flat terrain. For the spectral datasets, an ad-hoc masking technique was developed using a combination of texture analysis, principal component analysis, and morphological filtering. Two contrasting workflows were evaluated with fully-automated and semi-automated methods with mixed results. The highest mapping accuracy was 89.4% and the lowest was 79.1%, though the error of omission in mapping the permafrost remained high (7.02 - 59.7%) for most analyses. The spectral mapping algorithms did not replicate well across different high-resolution images, raising questions about the viability of using spectral methods alone to track thermokarst and landscape change over time. However, incorporating the spectral methods explored in this analysis with other datasets (e.g. LiDAR) has the potential to increase mapping accuracies. Both the methods and the results of this thesis enhance permafrost mapping efforts on the YKD, and provide a good first step to monitoring landscape change in the region.
    • Controls on ecosystem respiration of carbon dioxide across a boreal wetland gradient in Interior Alaska

      McConnell, Nicole A.; McGuire, A. David; Turetsky, Merritt R.; Harden, Jennifer W. (2012-08)
      Permafrost and organic soil layers are common to most wetlands in interior Alaska, where wetlands have functioned as important long-term soil carbon sinks. Boreal wetlands are diverse in both vegetation and nutrient cycling, ranging from nutrient-poor bogs to nutrient- and vascular-rich fens. The goals of my study were to quantify growing season ecosystem respiration (ER) along a gradient of vegetation and permafrost in a boreal wetland complex, and to evaluate the main abiotic and biotic variables that regulate CO₂ release from boreal soils. Highest ER and root respiration were observed at a sedge/forb community and lowest ER and root respiration were observed at a neighboring rich fen community, even though the two fens had similar estimates of root biomass and vascular green area. Root respiration also contributed approximately 40% to ER at both fens. These results support the conclusion that high soil moisture and low redox potential may be limiting both heterotrophic and autotrophic respiration at the rich fen. This study suggests that interactions among soil environmental variables are important drivers of ER. Also, vegetation and its response to soil environment determines contributions from aboveground (leaves and shoots) and belowground (roots and moss) components, which vary among wetland gradient communities.
    • The effects of permafrost degradation on soil carbon dynamics in Alaska's boreal region

      O'Donnell, Jonathan A. (2010-12)
      High-latitude regions store large quantities of organic carbon (C) in permafrost soils and peatlands, accounting for nearly half of the global belowground C pool. Projected climate warming over the next century will likely drive widespread thawing of near-surface permafrost and mobilization of soil C from deep soil horizons. However, the processes controlling soil C accumulation and loss following permafrost thaw are not well understood. To improve our understanding of these processes, I examined the effects of permafrost thaw on soil C dynamics in forested upland and peatland ecosystems of Alaska's boreal region. In upland forests, soil C accumulation and loss was governed by the complex interaction of wildfire and permafrost. Fluctuations in active layer depth across stand age and fire cycles determined the proportion of soil C in frozen or unfrozen soil, and in turn, the vulnerability of soil C to decomposition. Under present-day climate conditions, the presence of near-surface permafrost aids C stabilization through the upward movement of the permafrost table with post-fire ecosystem recovery. However, sensitivity analyses suggest that projected increases in air temperature and fire severity will accelerate permafrost thaw and soil C loss from deep mineral horizons. In the lowlands, permafrost thaw and collapse-scar bog formation resulted in the dramatic redistribution of soil water, modifying soil thermal and C dynamics. Water impoundment in collapse-scar bogs enhanced soil C accumulation in shallow peat horizons, while allowing for high rates of soil C loss from deep inundated peat horizons. Accumulation rates at the surface were not sufficient to balance deep C losses, resulting in a net loss of 26 g C m⁻² y⁻¹ from the entire peat column during the 3000 years following thaw. Findings from these studies highlight the vulnerability of soil C in Alaska's boreal region to future climate warming and permafrost thaw. As a result, permafrost thaw and soil C release from boreal soils to the atmosphere should function as a positive feedback to the climate system.
    • Experimental Study of Various Techniques to Protect Ice-Rich Cut Slopes

      Li, Lin; McHattie, Robert; Zhang, Xiong; Zhang, Mingchu (Alaska University Transportation Center, 2014-08)
      Cut slopes are usually required to achieve roadway design grades in the ice-rich permafrost areas in Alaska. However, excavation and exposure of a cut slope destroy the existing thermal balance and result in degradation of ice-rich permafrost. Environmentally acceptable, legal, and economically viable solutions for ice-rich slope protection are still rare. Three potential thermal-erosion mitigation techniques were investigated. Four test sections (Section A: 1 ft wood chips, Section B: coconut blanket, Section C: coconut blanket + Tecco-mesh, and Section D: 1 ft crushed rock as a control section) were constructed at the Dalton Highway 9 Mile Hill during the period of April 17 through April 27, 2013. Temperature and moisture sensors were installed to monitor four test sections and evaluate the effectiveness of the different mitigation techniques. Also, a weather station was built to record climatic information at the test site by April 30, 2013. The filed monitoring period ended on November 11, 2014. No obvious erosion was observed in Sections A and B due to less ice content when compared with Sections C and D which failed one and a half months after construction. The performance of four techniques was discussed in detail.
    • Geophysical Applications for Arctic/Subarctic Transportation Planning

      Schnabel, William E.; Fortier, Richard; Kanevskiy, Mikhail; Munk, Jens; Shur, Yuri; Trochim, Erin (Alaska University Transportation Center, 2014-07)
      This report describes a series of geophysical surveys conducted in conjunction with geotechnical investigations carried out by the Alaska Department of Transportation and Public Facilities. The purpose of the study was to evaluate the value of and potential uses for data collected via geophysical techniques with respect to ongoing investigations related to linear infrastructure. One or more techniques, including direct-current resistivity, capacitive-coupled resistivity, and ground-penetrating radar, were evaluated at sites in continuous and discontinuous permafrost zones. Results revealed that resistivity techniques adequately differentiate between frozen and unfrozen ground, and in some instances, were able to identify individual ice wedges in a frozen heterogeneous matrix. Capacitive-coupled resistivity was found to be extremely promising due to its relative mobility as compared with direct-current resistivity. Ground-penetrating radar was shown to be useful for evaluating the factors leading to subsidence in an existing road. Taken as a whole, the study results indicate that supplemental geophysical surveys may add to the quality of a geotechnical investigation by helping to optimize the placement of boreholes. Moreover, such surveys may reduce the overall investigation costs by reducing the number of boreholes required to characterize the subsurface.
    • Groundwater flow in a vertical plane at the interface of permafrost

      Paturi, Sairavichand; Barnes, David L.; Leigh, Mary Beth; Shur, Yuri (2017-08)
      Groundwater dynamics in discontinuous permafrost aquifers are complex. The topography of permafrost redirects flow in difficult-to-predict directions that can be tens of degrees off from the regional flow direction. Large zones of permafrost vertically separate aquifers into supra and sub-permafrost portions. The flow dynamics in each portion of the aquifer may be dissimilar due to different controlling boundary conditions. In areas of discontinuities in permafrost, known as open taliks, groundwater in the two portions of the aquifer may mix. These areas of mixing are the focus of this study, in particular, the groundwater dynamics in taliks located in the floodplain of lower reaches of rivers. The study hypothesizes that groundwater flow in floodplain taliks of lower reaches of rivers will bifurcate between the supra and sub-permafrost portions of a discontinuous permafrost aquifer. To test this hypothesis gradient, magnitudes and flow directions were determined at several depths ranging from the water table to 150 ft. (45.7 m) below ground surface, using a linear interpolation scheme in various locations in a floodplain talik. Errors in water level measurements due to instrument errors as well as vertically moving wells were propagated into the gradient calculations by Monte Carlo analysis. Results from this research show that a vertical divide in groundwater flow forms a short distance below the top of permafrost. Groundwater flow above the divide routes into the unconfined supra-permafrost portion of the aquifer. Water below the divide flows into the confined portion of the aquifer below permafrost. The position of the vertical groundwater divide may adjust in relation to the water table position. Additionally, a methodology is presented for stochastically propagating measurement errors into gradient analyses by Monte Carlo analysis. Understanding the flow dynamics in discontinuous permafrost aquifers is key to the understanding of contaminant transport, aquifer recharge, and resource development in subarctic environments.
    • Implications of pore-scale distribution of frozen water for the production of hydrocarbon reservoirs located in permafrost

      Venepalli, Kiran Kumar (2011-08)
      Frozen reservoirs are unique with the extra element of ice residing in them along with the conventional components of a reservoir. The sub-zero temperatures of these reservoirs make them complicated to explore. This study investigates reduction in relative permeability to oil with decrease in temperature and proposes a best-production technique for reservoirs occurring in sub zero conditions. Core flood experiments were performed on two clean Berea sandstone cores under permafrost conditions to determine the sensitivity of the relative permeability to oil (kro) over a temperature range of 23°C to -10°C and for connate water salinities ranging from 0 to 6467 ppm. Both cores showed maximum reduction in relative permeability to oil when saturated with deionized water; they showed minimum reduction when saturated with 6467 ppm of saline water. Theoretically, the radius of ice formed in the center of the pore can be determined using the Kozeny-Carman Equation by assuming the pores and pore throats as a cube with 'N' identical parallel pipes embedded in it. With obtained values of kro as input to the Kozeny-Carman Equation at -10°C, the radius of ice dropped from 0.145 [upsilon]rn to 0.069 [upsilon]rn when flooding, water salinity is increased to 6467 ppm. This analysis quantifies the reductions in relative permeability solely due to different formation salinities. Other parameters like fluid saturations and pore structure effects also are discussed. Fluids like deionized water, saline water, and antifreeze (a mixture of 60% ethylene or propylene glycol with 40% water) were tested to find the best flooding agent for frozen reservoirs. At 0°C, 9% greater recovery was observed with antifreeze than with saline water. Antifreeze showed 48% recovery even at -10°C, at which temperature the rest of the fluids failed to increase production.
    • Permafrost geosystem assessment at the Beaver Creek Road experimental site (Alaska Highway, Yukon, Canada)

      Stephani, Eva; Shur, Yuri; Fortier, Daniel; Kanevskiy, Mikhail; Connor, Billy (2013-05)
      An experimental site testing a range of engineering techniques for mitigating permafrost degradation along the Alaska Highway has been established in 2008 at Beaver Creek (Yukon, Canada). Based on the hypothesis that permafrost has a distinctive sensitivity to climate and terrain conditions at a local scale, a geosystem approach, which considers a set of components (e.g. permafrost, embankment, vegetation, hydrology and hydrogeology) and accounts for dynamics within a system, was applied to obtain a better understanding of local permafrost conditions and changes within the system. Therefore, this assessment, for ultimately measuring performance of the mitigation techniques, integrated the permafrost conditions, in terms of cryostratigraphic units and soil properties, with local climate, natural terrain and embankment conditions. The author, who participated in the site establishment, its baseline investigations and monitoring programs, presents here the baseline geosystem studies at the Beaver Creek Road Experimental Site with an emphasis on permafrost.
    • Processes controlling thermokarst lake expansion rates on the Arctic coastal plain of Northern Alaska

      Bondurant, Allen C.; Arp, Christopher D.; Jones, Benjamin M.; Daanen, Ronald P.; Shur, Yuri L. (2017-08)
      Thermokarst lakes are a dominant factor of landscape scale processes and permafrost dynamics in the otherwise continuous permafrost region of the Arctic Coastal Plain (ACP) of northern Alaska. Lakes cover greater than 20% of the landscape on the ACP and drained lake basins cover an additional 50 to 60% of the landscape. The formation, expansion, drainage, and reformation of thermokarst lakes has been described by some researchers as part of a natural cycle, the thaw lake cycle, that has reworked the ACP landscape during the course of the Holocene. Yet the factors and processes controlling contemporary thermokarst lake expansion remain poorly described. This thesis focuses on the factors controlling variation in extant thermokarst lake expansion rates in three ACP regions that vary with respect to landscape history, ground-ice content, and lake characteristics (i.e. size and depth). Through the use of historical aerial imagery, satellite imagery, and field-based data collection, this study identifies the controlling factors at multiple spatial and temporal scales to better understand the processes relating to thermokarst lake expansion. Comparison of 35 lakes across the ACP shows regional differences in expansion rate related to permafrost ice content ranging from an average expansion rate of 0.62 m/yr on the Younger Outer Coastal Plain where ice content is highest to 0.16 m/yr on the Inner Coastal Plain where ice content is lowest. Within each region, lakes vary in their expansion rates due to factors such as lake size, lake depth, and winter ice regime. On an individual level, lakes vary due to shoreline characteristics such as local bathymetry and bluff height. Predicting how thermokarst lakes will behave locally and on a landscape scale is increasingly important for managing habitat and water resources and informing models of land-climate interactions in the Arctic.
    • Risk Evaluation for Permafrost-Related Threats:Methods of Risk Estimation and Sources of Information

      Kanevskiy, Mikhail; Connor, Billy; Schnabel, Bill; Shur, Yuri; Bjella, Kevin; Trochim, Erin; Dean, Kelsey; Ellison, Ariel (2019-05)
      In our evaluation of permafrost-related threats that affect Alaska communities, we have focused on threats associated with permafrost degradation and thawing ground ice, which can result in significant thaw settlement and cause unacceptable damage to engineered structures. Our evaluation system for permafrost-related threats includes risks of general permafrost degradation and thaw settlement (general and differential). We have evaluated permafrost-related threats for 187 Alaska villages based on available information including scientific publications, maps, satellite imagery and aerial photographs, geotechnical reports, personal communication, community plans and reports, and other sources. Evaluation was based on five criteria: permafrost (PF) occurrence; PF temperature; thaw susceptibility of frozen soils (expected thaw settlement in case of permafrost degradation); massive ice occurrence; and existing PF-related problems. For each of these categories, four risk levels (ranks) were considered. The total (cumulative) risk level was based on the rating score (sum of individual ranks for all five categories). Based on the rating score, each village was assigned one of four risk levels: 0 – no permafrost; 5–8 – low risk level; 9–11 – medium risk level; 12–15 – high risk level. A vulnerability score was developed for each community allowing the identification of communities with the highest risk of damage due to thawing permafrost. Most of communities with the high-risk level (22 villages of 34) are underlain by continuous permafrost, while the low risk level is typical mainly of communities underlain by predominantly unfrozen soils/bedrocks (33 villages of 46), and no high risk levels were detected for this group of villages. Medium risk level is typical mainly of communities underlain by discontinuous and sporadic permafrost (35 villages of 47); some villages of this group are characterized by high and low risk levels (12 and 9, correspondingly). Occurrence of massive-ice bodies (mostly ice wedges) is typical exclusively of communities underlain by continuous and discontinuous permafrost (23 and 20 villages, correspondingly). We presume that at least 20 communities may have extremely ice-rich yedoma deposits with large ice wedges either within villages or in their vicinity. Permafrost conditions in Alaskan communities are very diverse, and in many cases they are extremely variable even within the same community. Detailed studies are required for more precise evaluation of potential permafrost-related threats associated with permafrost degradation and/or thawing of ground ice.
    • Simulation and analysis of wellbore stability in permafrost formation with FLAC

      Wang, Kai; Patil, Shirish; Chen, Gang (2015-07)
      Permafrost underlies approximately 80% of Alaska. Permafrost's high sensitivity to temperature variations plays a significant role in the stability of wellbores drilled through permafrost formations. Wellbore instability may cause stuck pipes, lost circulation, and/or collapse of the wellbore, resulting in extra cost and time loss. In order to minimize the influence of the heat produced during drilling, a vertical well is the only choice to penetrate permafrost formation. Fast Lagrangian Analysis of Continua (FLAC) was used in this simulation to test the minimum wellbore pressure to maintain stability in a permafrost formation. Three layers were set in the simulation model: clay, silt, and sand. With the drilling fluid temperature set at 343K and a 267K initial formation temperature, four different thermal times, i.e. 1 week, 1 month, 1 year, and 5 years, were tested to determine the minimum stable pressure. Pore pressure of the formation has the strongest effect on this pressure. And in a short operation period, drilling fluid temperature will not influence the minimum mud pressure value significantly. A regression analysis was conducted on the simulation results, and the minimum wellbore stable pressure was found to be a function of pore pressure, cohesion, frictional angle, temperature difference, conductivity difference, thermal time, and wellbore radius. With the help of this function, engineers could calculate stable pressure for wells in arctic area before drilling based on drilling fluid temperature.
    • Thermal analysis on permafrost subsidence on the North Slope of Alaska

      Agrawal, Neha Dinesh; Patil, Shirish; Chen, Gang; Dandekar, Abhijit; Bray, Matthew (2015-11)
      One of the major problems associated with the oil fields on the North Slope of Alaska is thawing permafrost around producing oil wells. In these wells, the heat from the producing well fluid gradually thaws the permafrost. This thawing in turn destroys the bond between the permafrost and the casing and causes instability that results in permafrost subsidence which further causes subsidence of the soil surrounding the wellbore and, subjects the casing to high mechanical stresses. The above problem has been addressed by several engineers, and several preventive measures, such as controlling the subsidence by refrigeration or by insulation of the wellbore, have been analyzed. Understanding the thermal behavior of the permafrost is imperative to analyzing permafrost subsidence and providing preventative measures. The current project focuses on building a scaled-down axi-symmetric model in FLAC 7.0 that will help us understand the thermal behavior (i.e., the heat input to the permafrost interval due to hydrocarbon production) and temperature distributions that result in permafrost subsidence. The numerical analysis estimated the thaw influence of steam injection used for heavy oil recovery and its effect on the area around the wellbore for 10 years. The developed model was compared with Smith and Clegg (1971) axi-symmetric model and COMSOL model and correlations of thaw radius and wellbore temperatures were obtained for different types of soils. Heat transfer mitigation techniques were also attempted which are discussed in the report further.
    • Use of Cellular Concrete for Air Convection Embankment to Protect Permafrost Foundations in Cold Regions: Feasibility Study

      Liu, Jenny; Wu, Hanli (2019-08-15)
      The air convection embankment (ACE) is a technique used to protect permafrost from thawing in road construction in cold regions. However, the desired materials needed for ACE are not readily available, which prevents its extensive use in Alaska. To overcome the limitation of traditional ACE, and further improve the cooling effect of ACE, this study investigated the feasibility of using cellular concrete as an alternative material for ACE in cold regions. The heat transfer patterns of the cellular concrete ACE, the crushed-rock ACE, and the sand/gravel embankment were studied using the numerical simulation. The results of the present study show that the cooling performance of both cellular concrete ACE and crushed-rock ACE are superior to the traditional sand/gravel embankment. The cellular concrete ACE has better heat insulation property in the summer, and the crushed-rock ACE has stronger natural convection in winter. For the annual cooling efficiency of the two different ACE techniques, the proposed cellular concrete ACE has a better cooling effect on the foundation soil than the crushed-rock ACE. These results indicate that the thermal conductivity and specific heat capacity of construction materials have significant impacts on the performance of the ACE.
    • Volumetric heat transfer via constructal theory, and its applications in permafrost and hydrogen energy storage

      Kukkapalli, Vamsi Krishna; Kim, Sun Woo; Lin, Chuen-Sen; Das, Debendra (2016-05)
      Constructal theory is widely used as a powerful tool in designing of engineering systems (flow configurations, patterns, geometry). This theory is observed in nature and its principles are applicable to general engineering. Constructal theory encompasses a wide range of space in the "design", drawing from each and every field from engineering to biology. The universal design of nature and the constructal law unify all animate schemata such as human blood circulatory systems, and inanimate systems, such as urban traffic and river basins. The proceeding research applies the overlying theories of constructal theory to the two different systems in order to achieve best thermal performance phenomena. The first is stabilization of roadway embankments in the permafrost regions with design modifications in existing thermosyphon evaporators with tree structure designs, and defining the optimal spacing between two neighboring thermosyphons based on thermal cooling phenomena. This research utilizes constructal law to the generation of tree-shaped layouts for fluid flow, so that the flow structures use the available space in optimally. The intention here is the optimization of geometry of the flow system. This begins with the most simple cases of tree-shaped flows: T- and Y-shaped constructs, the purpose of which is to create a flow connection between one point (defined as a "source" or "sink") to an infinity of points (via a line/area/volume). Empirically speaking, tree-shaped flows are natural examples of selforganization and optimization. By contrast, constructal law is theory which states that flow architectures such as these are the evolutionary results of nature which tend toward greater global flow access. Tree-shaped flows can be derived from this constructal law. The mathematical simulation revealed that there exists an optimal spacing between two neighboring thermosyphons, and the tree structures perform better than the existing configuration in terms of thermal cooling. The second part of the research is to find an effective way to reject heat released from the metal hydride powder to the outer environment during the hydrogen absorption process. The main objective of this investigation is to minimize the time required for the absorption process, and to reduce the hotspot temperature by determining the optimal aspect ratio of rectangular fins, while the total volume of fins used is kept constant. The intension of using constructal theory in this part of research is to find the optimal geometrical parameters (length, width) of the fin structure for better thermal performance of the metal hydride reactor system. The simulations revealed that there exists an optimum aspect ratio of rectangular fins for accelerating heat rejection and lowering the hotspot temperature in a cylindrical metal hydride reactor. Constructal theory is supremely adapted for use in 2-dimensional and 3-dimensional design for heat transfer structures, as it allows for incorporation of minute analysis of the interior structure with the goal of optimizing for heat transfer. In its application in the realm of engineering, every multidimensional solid structure that is to be cooled, heated or serviced by fluid streams must be vascularized. By this definition, 'vascularization' includes, however is not limited to, structures such as trees, geometrical spacing, and solid walls. Here, every geometric detail will be sized and positioned to achieve maximum efficacy from an engineering design point of view. Furthermore, via design morphing we can achieve low resistances in flow structures which are applicable in cooling and heating applications. An example is that of a ground-source heat pump design where the piping design is morphed by constructal law and spaced in an optimal way to achieve maximum thermal efficiency when extracting heat from the ground.