• Characterizing the fish community in turbid Alaskan rivers to assess potential interactions with hydrokinetic devices

      Bradley, Parker T.; Seitz, Andrew; Sutton, Trent; McPhee, Megan; Burr, John (2012-12)
      The Yukon and Tanana rivers are two large, glacially turbid rivers in Alaska, where hydrokinetic projects are being explored for feasibility of electricity production. Downstream migration behavior of fishes in these rivers is poorly understood; as a result, the potential impacts of hydrokinetic devices, which will be placed in the deepest and fastest part of the river, on fishes are unknown. Downstream migrating fishes were sampled during the ice-free season along the river margins of the Yukon River in 2010 and the river margins and mid-channel of the Tanana River in 2011. Results suggest that the river margins in the Yukon and Tanana rivers are primarily utilized by resident freshwater species, the mid-channel is utilized by Pacific salmon (Oncorhynchus spp.) smolts, and only chum salmon (Oncorhynchus keta) smolts utilize both of these areas. Some species exhibited distinct peaks and trends in downstream migration timing including longnose suckers (Catostomus catostomus), whitefishes (Coregonine), Arctic grayling (Thymallus arcticus), lake chub (Couesius plumbeus), Chinook salmon (O. tshawytscha), coho salmon (O. kisutch), and chum salmon. As a result of these fishes' downstream migration behavior, hydrokinetic devices installed in surface waters of the middle of the river channel will have the most potential interactions with Pacific salmon smolts during their downstream migration to the ocean from May through July.