• A Mechanical Evaluation Of Alaskan White Spruce

      Syta, Dean Edward; Curtis, Kevin; Gasbarro, Tony; Raad, Luffi (1993)
      This project serves to demonstrate the usefulness of Alaskan White Spruce as a construction material. This is done through the development of allowable strength values for design purposes. Such values allow engineers to design structures using Alaskan White Spruce, increasing the usefulness of the wood species.<p> The mechanical properties of Alaskan White Spruce are investigated. Summaries of the mechanical properties and of subsequently developed allowable structural design values are given. Included are discussions of the Alaskan White Spruce species, general wood behavior, mechanical testing of wood, statistical data analysis, and allowable property development. Results are compared against the work of other researchers. Appendices of test data are given.<p> Test results and subsequent data analysis indicate Alaskan White Spruce possesses strength similar to Douglas-Fir/Larch lumber and higher strength than Spruce/Pine/Fir type lumbers. This indicates that Alaskan White Spruce may have considerable worth as a construction material. <p>
    • Anatomical And Mechanical Characteristics Of Woods Used To Manufacture Bassoons

      Levings, Carolyn K.; Barber, Valerie; Alix, Claire; Hulsey, Leroy; Keating, Richard; Rydlinski, George (2012)
      The purpose of this dissertation was three-fold -- 1) to determine if anatomical characteristics and mechanical characteristics derived from tapping (the act of striking an object lightly) can be used to more accurately describe bassoon resonant wood than the characters in use now, 2) to determine if any Alaska hardwoods can be used to construct bassoons, and 3) to produce lists of potential North American hardwoods and resonant bassoon wood characters. The bassoon resonant woods (Acer spp., Dalbergia melanoxylon, and Pyrus spp.) were compared to a known non-resonant bassoon wood (Juglans nigra). Vessel length and width, fiber length, and axial parenchyma width were measured in sectioned and macerated wood slides, along with the ratios of crystalline cellulose, lignin, pectin, and other aromatics in the cell wall. Partial frequencies created from tapping specimens on each longitudinal face were measured from melodic and peak partial spectrograms, as well as the spectrum obtained from the beginning of the sound. MANOVA and univariate ANOVA showed the resonant woods were significantly different from the non-resonant Juglans nigra using the characters measured. These characters were then used to compare two Alaska hardwoods (Alnus rubra and Betula neoalaskana) to the temperate resonant woods (Acer spp. and Pyrus spp.) and the non-resonant Juglans nigra using k-means clustering, MANOVA, and univariate ANOVA. Both Alaska hardwoods grouped with the non-resonant Juglans nigra. Lastly a list of potential North American hardwoods to be checked anatomically was compiled, as well as a list of characters that combine those used now as well as characters found in this study.