• Assessing effects of climate change on access to ecosystem services in rural Alaska

      Cold, Helen S.; Brinkman, Todd J.; Hollingsworth, Teresa N.; Brown, Caroline L.; Verbyla, David L. (2018-12)
      Across the planet, climate change is altering the way human societies interact with the environment. Amplified climate change at high latitudes is significantly altering the structure and function of ecosystems, creating challenges and necessitating adaptation by societies in the region that depend on local ecosystem services for their livelihoods. Rural communities in Interior Alaska rely on plants and animals for food, clothing, fuel and shelter. Previous research suggests that climate-induced changes in environmental conditions are challenging the abilities of rural residents to travel across the land and access local resources, but detailed information on the nature and effect of specific conditions is lacking. My objectives were to identify climate-related environmental conditions affecting subsistence access, and then estimate travel and access vulnerability to those environmental conditions. I collaborated with nine Interior Alaskan communities within the Yukon River basin and provided local residents with camera-equipped GPS units to document environmental conditions directly affecting access for 12 consecutive months. I also conducted comprehensive interviews with research participants to incorporate the effects of environmental conditions not documented with GPS units. Among the nine communities collaborating on this research, 18 harvesters documented 479 individual observations of environmental conditions affecting their travel with GPS units. Environmental conditions were categorized into seven condition types. I then ranked categories of conditions using a vulnerability index that incorporated both likelihood (number of times a condition was documented) and sensitivity (magnitude of the effect from the condition) information derived from observations and interviews. Changes in ice conditions, erosion, vegetative community composition and water levels had the greatest overall effect on travel and access to subsistence resources. Environmental conditions that impeded travel corridors, including waterways and areas with easily traversable vegetation (such as grass/sedge meadows and alpine tundra), more strongly influenced communities off the road network than those connected by roads. Combining local ecological knowledge and scientific analysis presents a broad understanding of the effects of climate change on access to subsistence resources, and provides information that collaborating communities can use to optimize adaptation and self-reliance.
    • Ecological interactions among important groundfishes in the Gulf of Alaska

      Barnes, Cheryl L.; Beaudrea, Anne H.; Dorn, Martin W.; Holsman, Kirstin K.; Hunsicker, Mary E.; Mueter, Franz J. (2019-12)
      Complex ecological interactions such as predation and competition play an important role in shaping the structure and function of marine communities. In fact, these processes can have greater impacts than those related to fishing. We assessed ecological interactions among economically important fishes in the Gulf of Alaska - a large marine ecosystem that has recently undergone considerable shifts in community composition. Specifically, we developed an index of predation for Walleye Pollock (Gadus chalcogrammus) to examine spatiotemporal changes in consumption, quantify portfolio effects, and better understand diversity-stability relationships within the demersal food web. We also evaluated the potential for competition between two important pollock predators, Arrowtooth Flounder (Atheresthes stomias) and Pacific Halibut (Hippoglossus stenolepis). We found highly variable predation intensity on Gulf of Alaska pollock. The combination of a single dominant predator and synchronous consumption dynamics indicated strong top-down control in the region. Spatial heterogeneity, however, may offset trophic instability at the basin scale. Assessments of resource partitioning provided little indication for competition between Arrowtooth Flounder and Pacific Halibut of similar lengths. Morphological differences between the two flatfish predators prompted an exploration into whether our conclusions about resource partitioning were dependent upon the size metric used. From this study, we found a relatively early onset of piscivory for Arrowtooth Flounder. Relationships between predator size and prey size also suggested gape limitation among Pacific Halibut sampled. Trophic niche separation was more pronounced for fishes with larger gapes, indicating greater potential for competition among smaller Arrowtooth Flounder and Pacific Halibut in Southeast Alaska. Reexamining basin-scale relationships between spatial and dietary overlap according to gape size would further elucidate the effects an increasing Arrowtooth Flounder population has had on changes in Pacific Halibut size-at-age. Results from this dissertation improve our understanding about the impacts of complex ecological interactions on population and community dynamics, and how those interactions may change in time, space, and under different environmental conditions.
    • Feeding ecology of scaup ducklings across a heterogeneous boreal wetland landscape

      DuBour, Adam J.; Lindberg, Mark; Gurney, Kirsty; Hundertmark, Kris (2019-08)
      Understanding how patterns of food resources influence the behavior and fitness of free-living animals is critical in predicting how changes to such resources might influence populations. The boreal region of North America is relatively undeveloped and contains abundant freshwater lakes and wetlands. These largely pristine and stable habitats harbor high densities of aquatic invertebrates, which are a critical food source for the numerous waterbird species that breed in the boreal. Invertebrates are of particular importance for the optimal growth and survival of waterbird chicks. However, observations of long-term change to boreal aquatic habitats and their invertebrate populations associated with a warming climate has been implicated in the declines of some boreal breeding waterbirds, such as the lesser scaup (Aythya affinis). Lesser scaup are known to feed extensively on amphipods, a freshwater crustacean; however, ducklings have been shown to have a diverse diet. Our goal was to use the naturally occurring heterogeneity of aquatic invertebrates across boreal lakes within the Yukon Flats National Wildlife Refuge in interior Alaska to better understand how changes in invertebrate prey resources might affect diet selection and growth in lesser scaup ducklings. First, we used a stable isotope approach to quantify the variation in the trophic niche within our population of ducklings. We found that as a population, lesser scaup ducklings consume a variety of aquatic insects, crustaceans and mollusks, and that variation in the population diet is largely attributable to variation in diet between birds from different lakes with different invertebrate communities. Second, we used the same habitat heterogeneity to examine how gradients of invertebrate abundance relate to the growth of ducklings. We observed that lesser scaup ducklings experienced reduced growth rates in lakes that had little to no amphipods. Taken together, these results suggest that while lesser scaup ducklings are a flexible consumer that can adapt to changes in invertebrate populations, ducklings may face negative fitness repercussions when consuming prey other than amphipods.
    • Foliage and winter woody browse quality of an important Salix browse species: effects of presence of alder-derived nitrogen and winter browsing by Alaskan moose (Alces alces gigas)

      Burrows, Justin; Kielland, Knut; Wagner, Diane; Ruess, Roger (2019-12)
      In this study, I examined the relationship between soil nitrogen and winter browsing by moose on the physical and chemical characteristics of Salix alaxensis; specifically stem production, leaf nutritional quality, and stem nutritional quality of tissues produced the following growing season. I measured stem biomass production the 2013 growing season and offtake during the 2013-2014 winter browsing season at 16 sites on the Tanana River floodplain near Fairbanks, Alaska. I revisited the sites the following summer and autumn to assess regrowth and to collect soil, foliage, and stem samples. Browsing intensity and total soil nitrogen were similar in sites with and without alder, a nitrogen-fixing shrub. Soil nitrogen and browsing intensity were not consistently related to changes in stem or leaf quality, although there were significant relationships in some subsets. Soil nitrogen and browsing intensity also did not have consistent relationships with stem regrowth the following growing season. These results indicate that S. alaxensis growing in this system are able to recover from a naturally broad range of browsing utilization, including very high levels of offtake, and continue to produce nutritious leaves and stems.
    • Impacts of a top predator (Esox lucius) on salmonids in Southcentral Alaska: genetics, connectivity, and vulnerability

      Jalbert, Chase S.; Falke, Jeffrey; Westley, Peter; López, J. Andrés; Dunker, Kristine (2018-12)
      Worldwide invasion and range expansion of northern pike (pike; Esox lucius) have been linked to the decline of native fishes and new techniques are needed to assess the effects of invasion over broad geographic scales. In Alaska, pike are native north and west of the Alaska Mountain Range but were introduced into Southcentral Alaska in the 1950s and again in the 1970s. To investigate the history of the invasion into Southcentral Alaska, I identified 7,889 single nucleotide polymorphisms (SNPs) from three native and seven introduced populations in Alaska and examined genetic diversity, structure, and affinities of native and invasive pike. Pike exhibited low genetic variability in native populations (mean heterozygosity = 0.0360 and mean π = 0.000241) and further reductions in introduced populations (mean heterozygosity = 0.0227 and mean π = 0.000131), which suggests a bottleneck following introduction. Population differentiation was high among some populations (global FST = 0.424; max FST = 0.668) when compared to other freshwater fishes. I identified five genetically distinct clusters of populations, consisting of three native groups, a single Susitna River basin invasive group, and a Kenai Peninsula group, with little evidence of admixture among groups. The extremely reduced genetic diversity observed in invasive northern pike populations does not appear to affect their invasion success as the species range Southcentral Alaska continues to expand. To assess the vulnerability of five species of Pacific salmon (Oncorhynchus spp.) to the invasion, I combined intrinsic potential habitat modeling, connectivity estimates, and Bayesian networks across 22,875km of stream reaches in the Matanuska-Susitna basin, Alaska, USA. Pink salmon were the most vulnerable species, with 15.2% (2,458 km) of their range identified as "highly" vulnerable. They were followed closely by chum salmon (14.8%) and coho salmon (14.7%). Finally, analysis of the intersection of vulnerable salmon habitats revealed 1,001 km of streams that were highly vulnerable for all five Pacific salmon. This framework is easy to implement, adaptable to any species or region, and cost effective. With increasing threats of species introductions, fishery managers need new tools like those described here to efficiently identify critical areas shared by multiple species, where management actions can have the greatest impact.
    • Learning from the local scale: identifying and addressing local blind spots in Arctic environmental governance

      Curry, Tracie; Meek, Chanda; Trainor, Sarah; Berman, Matthew; Lopez, Ellen; Streever, Bill (2019-08)
      Environmental governance in the context of climate change adaptation brings together diverse actors and stakeholders to develop and enact policies across a broad range of scales. However, local needs and priorities are often mismatched with those pursued by entities at different levels of decision-making. This mismatch is perpetuated, in part, by the dominating influence of the Western worldview in knowledge processes involving the creation, sharing, and use of environmental knowledge. Persistent biases that favor Western science and technical information while marginalizing other important sources like local and Indigenous knowledge create blind spots that may adversely affect adaptation outcomes. In this research, a case study of the Native Village of Wainwright, Alaska is used to explore the topic of information blind spots in environmental governance resulting from 1) low resolution tools employed within broad scale adaptation initiatives; 2) preferences for easily quantifiable information; and 3) the challenge of communicating context-rich details to outside decision makers, given disciplinary biases and organizational conventions. This dissertation comprises manuscripts based on three studies undertaken to address the above blind spots in specific areas of adaptation planning. The first manuscript furthers conventional methods of adaptation classification through a place-based approach that uses directed content analysis to identify aspects of local adaptation not readily captured by low resolution frameworks. The second manuscript employs contextual analysis and extends Ostrom's Institutional Analysis and Development framework to characterize the role of local informal institutions in adaptation and provide insights into how difficult-to-quantify social and cultural norms might be leveraged in planned adaptation initiatives. The third manuscript reports on a formative endeavor that looked practically at conventions for communicating environmental change to public sector decision-makers, and tested a survey that explored the potential for context-rich visuals and other reporting strategies to effectively convey information about local observations and experiences of change.
    • Mercury concentrations and feeding ecology of fishes in Alaska

      Cyr, Andrew Philip; López, Juan Andres; O'Hara, Todd; Wooller, Matthew; Seitz, Andrew (2019-05)
      Mercury (Hg) is a ubiquitous contaminant found in nearly every fish species analyzed. Certain forms of Hg accumulate efficiently in fish tissues, sometimes reaching concentrations of concern for human and wildlife health when consumed. This has motivated considerable research and interventions surrounding fish consumption with Hg concentrations as the underlying cause of over 80% of fish consumption advisories in the United States and Canada. The ecological and physiological drivers that influence the concentrations of Hg in fishes are complex and vary among taxa spatially and temporally. Studying these drivers and their respective influences on Hg concentrations can help elucidate observed differences in Hg concentrations across space and time, which can then be used to improve management and consumption strategies. Here I present a series of studies focused on the chemical feeding ecology of Hg by measuring total Hg (THg) concentrations and ratios of nitrogen and carbon stable isotopes in multiple fish species from three regions in Alaska. In Chapter 2 I described foundational field collection efforts to characterize the fish communities from West Creek and the Taiya River in Klondike Gold Rush National Historical Park, and the Indian River in Sitka Historical National Park, Alaska. This chapter and agency report presents a survey of the fish species assemblage of the rivers and laid the framework for the regional analyses I conducted in the study presented in Chapter 3. In Chapter 3 I report inter- and intra-river comparisons of THg concentrations and associated feeding ecology of riparian Dolly Varden, separated by anadromous barriers in each system. I concluded that resident Dolly Varden that co-habit riverine locations with spawning salmon consume more salmon eggs than resident Dolly Varden from other locations of the same river that do not co-habit with spawning salmon. This is reflected in the isotopic composition of their tissues, and subsequently the THg concentrations of these fish are lower relative to Dolly Varden from parts of the same river above anadromous barriers. In Chapter 4, I describe regional patterns of THg concentrations and stable isotope values of carbon and nitrogen in nine species of fish and invertebrates from the Bering Sea and North Pacific Ocean along the Aleutian Islands, using Steller sea lion management zones as a spatial framework. I determine that most species from the Western Aleutian Islands have greater THg concentrations, and more negative δ¹³C values than those from the Central Aleutian Islands, indicating ecosystem-wide differences in THg concentrations and fish feeding ecology. I also determined that Amchitka Pass, a well-documented oceanographic and ecological divide along the Aleutian Island chain, aligns better with differences in THg concentrations than the boundary between Steller sea lion management zones. In Chapter 5, I report THg and methylmercury concentrations in fishes of Kotzebue Sound, including seven species that are important for subsistence users. I determined that fork length influences Hg concentrations within individual species, and that trophic relationships within a food web, a factor associated with biomagnification, influences Hg concentrations across the entire food web. I also observed that muscle tissues from virtually every individual fish had Hg loads below the State of Alaska's criteria for unlimited consumption. Taken together, the work conducted in this dissertation helps us better understand the ecological dynamics of Hg in aquatic food webs and has contributed to Hg monitoring of fish resources across parts of Alaska.
    • Pairwise comparisons of shrub change across alpine climates show heterogeneous response to temperature in Dall's Sheep range

      Melham, Mark; Valentine, Dave; Panda, Santosh; Brinkman, Todd (2019-12)
      Encroachment of woody vegetation into alpine and high latitude systems complicates resource use for specialist wildlife species. We converted Landsat imagery to maps of percent shrub cover in alpine areas of Dall's sheep (Ovis dalli dalli) range. We then compared percent cover to interpolated climate data to infer drivers of shrub change between the 1980s and 2010s and determine if that change is occurring at different rates in climatically distinct alpine areas. We identified areas spatially interconnected by their mean July temperature intervals and compared their rates of shrub change, finding net rates of shrub growth were higher at temperatures notably above shrub growing season minimums. Along a climatic gradient, high precipitation areas had highest net shrub change, Arctic areas followed, while alpine areas of interior Alaska and the cold Arctic showed the least amount of net shrub change at these higher temperatures. Despite the requirement of higher temperatures for shrub growth, temperature and net shrub change displayed different relationships across the range wide climatic gradient. In areas of rapid climate warming, such as the Arctic and cold Arctic, the linear correlation between shrub change and temperature was highest. In the high precipitation areas where temperatures have been largely above growing season minimums during the study period, precipitation had the strongest linear correlation with shrub change. High latitude studies on shrub change focus primarily on expansion in the Arctic, where increased greening trends are linked to higher rates of warming. We provide the broadest climatic examination of shrub change and its drivers in Alaska and suggest shrub expansion 1) occurs more broadly than just in areas of notable climate warming and 2) is dependent on different environmental factors based on regional climate. The implications for Dall's sheep are complicated and further research is necessary to understand their adaptive capacity in response to this widespread vegetative shift.
    • The Reliability and Effectiveness of a Radar-Based Animal Detection System

      Huijser, Marcel P.; Fairbank, Elizabeth R.; Abra, Fernanda D. (Center for Environmentally Sustainable Transportation in Cold Climates, 2017-09)
      This document contains data on the reliability and effectiveness of an animal detection system along U.S. Hwy 95 near Bonners Ferry, Idaho. The system uses a Doppler radar to detect large mammals (e.g., deer and elk) when they approach the highway. The system met most of the suggested minimum norms for reliability. The total time the warning signs were activated was at most 90 seconds per hour, and likely substantially less. Animal detection systems are designed to detect an approaching animal. After an animal has been detected, warning signs are activated which allow drivers to respond. Results showed that 58.1–67.9% of deer were detected sufficiently early for northbound drivers, and 70.4–85% of deer were detected sufficiently early for southbound drivers. The effect of the activated warning signs on vehicle speed was greatest when road conditions were challenging (e.g., freezing temperatures and snow- and ice-covered road surface) and when visibility was low (night). In summer, there was no measurable benefit of activated warning signs, at least not as far as vehicle speed is concerned. Depending on the conditions in autumn and winter, the activated warning signs resulted in a speed reduction of 0.69 to 4.43 miles per hour. The report includes practical recommendations for operation and maintenance of the system and suggestions for potential future research.
    • The use of aerial imagery to map in-stream physical habitat related to summer distribution of juvenile salmonids in a Southcentral Alaskan stream

      Perschbacher, Jeff; Margraf, F. Joseph; Hasbrouck, James; Wipfli, Mark; Prakash, Anupma (2011-12)
      Airborne remote sensing (3-band multispectral imagery) was used to assess in-stream physical habitat related to summer distributions of juvenile salmonids in a Southcentral Alaskan stream. The objectives of this study were to test the accuracy of using remote sensing spectral and spatial classification techniques to map in-stream physical habitat, and test hypotheses of spatial segregation of ranked densities of juvenile chinook salmon Oncorhynchus tschwytscha, coho salmon O. kisutch, and rainbow trout O. mykiss, related to stream order and drainage. To relate habitat measured with remote sensing to fish densities, a supervised classification technique based on spectral signature was used to classify riffles, non-riffles, vegetation, shade, gravel, and eddy drop zones, with a spatial technique used to classify large woody debris. Combining the two classification techniques resulted in an overall user's accuracy of 85%, compared to results from similar studies (11-80%). Densities of juvenile salmonids was found to be significantly different between stream orders, but not between the two major drainages. Habitat data collected along a 500-meter stream reach were used successfully to map in-stream physical habitat for six river-kilometers of a fourth-order streams. The use of relatively inexpensive aerial imagery to classify in-stream physical habitats is cost effective and repeatable for mapping over large areas, and should be considered an effective tool for fisheries and land-use managers.