• Solar magnetic fields: source, evolution, and interaction with planetary magnetospheres

      Burkholder, Brandon; Delamere, Peter; Otto, Antonius; Newman, David; Ng, Chung-Sang; Connor, Hyunju (2019-08)
      Magnetized plasmas with twisted and filamented magnetic fields are pervasive throughout the heliosphere. In the solar magnetic field, photospheric convection on scale sizes from granules to differential rotation is responsible for driven magnetic reconnection. These reconnection sites are closely related to the magnetic topology, which is highly complex as the magnetic field is structured by a network of many thousands of magnetic flux concentrations. The coronal plasma overlying this "magnetic carpet" is the source of the solar wind flow, which has been found to be turbulent as close to the sun as our observations can currently resolve. At 1 AU, observations have also revealed a highly structured solar wind which we posit in this thesis originates in the corona rather than forming in-transit. Further, the solar wind-magnetosphere interaction depends on variability in the solar wind. When the boundary between solar wind plasma and magnetospheric plasma is unstable to the growth of Kelvin-Helmholtz waves, driven magnetic reconnection can occur on the magnetopause boundary. Such reconnection allows magnetic field to thread the boundary and transport can take place. We quantify the solar wind interaction for a corotation dominated system in terms of the mass and momentum transport driven by Kelvin-Helmholtz instabilities. Model-data comparisons are performed in this thesis using both the magnetohydrodynamic and hybrid-kinetic approaches for fluid simulations.