• Dissolved organic matter in wetland soils and streams of Southeast Alaska: Source, Concentration, and Chemical Quality

      Fellman, Jason B.; Hood, Eran; Boone, Rich; Jones, Jeremy; White, Dan; D'Amore, David (2008-12)
      Dissolved organic matter (DOM) transported from terrestrial to aquatic ecosystems is an important source of C, N and energy for the metabolism of aquatic heterotrophic bacteria. I examined the concentration and chemical quality of DOM exported from coastal temperate watersheds in southeast Alaska to determine if wetland soils are an important source of biodegradable dissolved organic carbon (BDOC) to aquatic ecosystems. I addressed this question through a combination of high resolution temporal and spatial field measurements in three watersheds near Juneau, Alaska by using a replicated experimental design that characterized DOM export from three different soil types (bog, forested wetland and upland forest) within each of the watersheds. PARAFAC modeling of fluorescence excitation-emission spectroscopy and BDOC incubations were used to evaluate the chemical quality and lability of DOM. Overall, my findings show that wetland soils contribute substantial biodegradable DOM to streams and the response in BDOC delivery to streams changes seasonally, with soil type, and during episodic events such as stormflows. In particular, the chemical quality of DOM in streamwater and soil solution was similar during the spring runoff and fall wet season, as demonstrated by the similar contribution of protein-like fluorescence in soil solution and in streams. These findings indicate a tight coupling between wetland DOM source pools and streams is responsible for the export of BDOC from terrestrial ecosystems. Thus, seasonal changes in soil-stream linkages can have a major influence on watershed biogeochemistry with important implications for stream metabolism and the delivery of labile DOM to coastal ecosystems. Soil DOM additions in small streams draining the three soil types showed that DOM leached from watershed soils is readily used as a substrate by stream heterotrophs and at the same time modified in composition by the selective degradation of the proteinaceous fraction of DOM. These findings indicate terrestrial DOM inputs to streams are an important source of C to support stream heterotrophic production. Thus, the production of protein-rich, labile DOM and subsequent loss in stream runoff has the potential to be an important loss of C and N from coastal temperate watersheds.
    • Foliage and winter woody browse quality of an important Salix browse species: effects of presence of alder-derived nitrogen and winter browsing by Alaskan moose (Alces alces gigas)

      Burrows, Justin; Kielland, Knut; Wagner, Diane; Ruess, Roger (2019-12)
      In this study, I examined the relationship between soil nitrogen and winter browsing by moose on the physical and chemical characteristics of Salix alaxensis; specifically stem production, leaf nutritional quality, and stem nutritional quality of tissues produced the following growing season. I measured stem biomass production the 2013 growing season and offtake during the 2013-2014 winter browsing season at 16 sites on the Tanana River floodplain near Fairbanks, Alaska. I revisited the sites the following summer and autumn to assess regrowth and to collect soil, foliage, and stem samples. Browsing intensity and total soil nitrogen were similar in sites with and without alder, a nitrogen-fixing shrub. Soil nitrogen and browsing intensity were not consistently related to changes in stem or leaf quality, although there were significant relationships in some subsets. Soil nitrogen and browsing intensity also did not have consistent relationships with stem regrowth the following growing season. These results indicate that S. alaxensis growing in this system are able to recover from a naturally broad range of browsing utilization, including very high levels of offtake, and continue to produce nutritious leaves and stems.