Now showing items 21-40 of 6258

    • Reynolds Curriculum Vita 2020

      Reynolds, Douglas (none, 2020-07-07)
    • PEDESTRIAN TRAVEL-TIME MAPS FOR WHITTIER, ALASKA: An anisotropic model to support tsunami evacuation planning

      Gardine, Lea; Nicolsky, Dmitry (2019-05)
      Tsunami-induced pedestrian evacuation for the community of Whittier is evaluated using an anisotropic modeling approach developed by the U.S. Geological Survey. The method is based on path-distance algorithms and accounts for variations in land cover and directionality in the slope of terrain. We model evacuation of pedestrians to exit points from the tsunami hazard zone boundary. The pedestrian travel is restricted to the roads only. Results presented here are intended to provide guidance to local emergency management agencies for tsunami inundation assessment, evacuation planning, and public education to mitigate future tsunami hazards.
    • PEDESTRIAN TRAVEL-TIME MAPS FOR SITKA, ALASKA: An anisotropic model to support tsunami evacuation planning

      Macpherson, Amy; Gardine, Lea; Nicolsky, Dmitry (2020-06)
      Tsunami-induced pedestrian evacuation for Sitka is evaluated using an anisotropic modeling approach developed by the U.S. Geological Survey. The method is based on path-distance algorithms and accounts for variations in land cover and directionality in the slope of terrain. We model evacuation of pedestrians to exit points from the tsunami hazard zone. The pedestrian travel is restricted to the roads only. Results presented here are intended to provide guidance to local emergency management agencies for tsunami inundation assessment, evacuation planning, and public education to mitigate future tsunami hazards.
    • PEDESTRIAN TRAVEL-TIME MAPS FOR PERRYVILLE, ALASKA: An anisotropic model to support tsunami evacuation planning

      Gardine, Lea; Nicolsky, Dmitry (2019-08)
      Tsunami-induced pedestrian evacuation for the community of Perryville is evaluated using an anisotropic modeling approach developed by the U.S. Geological Survey. The method is based on path-distance algorithms and accounts for variations in land cover and directionality in the slope of terrain. We model evacuation of pedestrians to exit points located at the tsunami hazard zone boundary. Pedestrian travel-time maps are computed for two cases: i) travel to an existing evacuating shelter and ii) travel to either the evacuation or an alternative shelter. Results presented here are intended to provide guidance to local emergency management agencies for tsunami inundation assessment, evacuation planning, and public education to mitigate future tsunami hazards.
    • PEDESTRIAN TRAVEL-TIME MAPS FOR CORDOVA, ALASKA: An anisotropic model to support tsunami evacuation planning

      Macpherson, Amy; Gardine, Lea; Nicolsky, Dmitry (2020-06)
      Tsunami-induced pedestrian evacuation for Cordova is evaluated using an anisotropic modeling approach developed by the U.S. Geological Survey. The method is based on path-distance algorithms and accounts for variations in land cover and directionality in the slope of terrain. We model evacuation of pedestrians to exit points from the tsunami hazard zone. The pedestrian travel is restricted to the roads only. Results presented here are intended to provide guidance to local emergency management agencies for tsunami inundation assessment, evacuation planning, and public education to mitigate future tsunami hazards.
    • Energy Civilization: Civilization's Ultimate Energy Forecast

      Reynolds, Douglas (None, 2020-06-16)
      This treatise is an addendum to Reynolds’ (2011). It looks at the U.S. shale-oil production trend, and specifically at the Hubbert peak of that trend. Simmons (2005), Deffeyes (2001), Hubbert, (1962), Norgaard (1990) and Campbell (1997), among others show how there can be a peak in oil production. Reynolds (2002, 2009) explains the economic and cost theory for how and why the Hubbert Curve works, including how the information and depletion effects create such a curve. Nevertheless, Maugeri (2007), Adelman and Lynch (1997), and Lynch (2002) suggest that one should never curve fit an oil production trend, contrary to most economic disciplines where curve fitting using econometrics is the norm. Although, as of early 2020 the COVID-19 recession is greatly affecting petroleum markets. Nevertheless, the Hubbert supply trend is relevant. Also, Reynolds and Umekwe (2019) show that shale-gas and shale-oil can be compliments or substitutes in production. Based on that relationship, once the U.S. shale-oil peak occurs, it may be the world’s ultimate Hubbert peak with much smaller and lower Hubbert cycles thereafter. Worldwide petroleum institutions and strategies will also change. This treatise estimates a U.S. shale-oil Hubbert peak, scrutinizes the Hubbert related theories and explores oil price forecasts, taking into account medium run COVID-19 oil demand effects.
    • Effects of Reading Text While Driving: A Driving Simulator Study

      Prevedouros, Panos; Miah, M. Mintu; Nathanail, Eftihia (2020-02)
      Although 47 US states make the use of a mobile phone while driving illegal, many people use their phone for texting and other tasks while driving. This research project summarized the large literature on distracted driving and compared major outcomes with those of our study. We focused on distraction due to reading text because this activity is most common. For this research project, we collected simulator observations of 203 professional taxi drivers (175 male, and 28 female) working at the same Honolulu taxi company, using the mid-range driving simulator VS500M by Virage. After a familiarization period, drivers were asked to read realistic text content relating to passenger pick up displayed on a 7-inch tablet affixed to the dashboard. The experimental scenario was simulated on a two-lane rural highway having a speed limit of 60 mph and medium traffic. Drivers needed to follow the lead vehicle under regular and text-reading conditions. The large sample size of this study provided a strong statistical base for driving distraction investigation on a driving simulator. The comparison between regular and text-reading conditions revealed that the drivers significantly increased their headway (20.7%), lane deviations (354%), total time of driving blind (352%), maximum duration of driving blind (87.6% per glance), driving blind incidents (170%), driving blind distance (337%) and significantly decreased lane change frequency (35.1%). There was no significant effect on braking aggressiveness while reading text. The outcomes indicate that driving performance degrades significantly by reading text while driving. Additional analysis revealed that important predictors for maximum driving blind time changes are sociodemographic characteristics, such as age and race, and past behavior attributes.
    • Seismicity and Stresses in the Kantishna Seismic Cluster, Central Alaska

      Burris, Lea A. (2007-12)
      The Kantishna Cluster is an enigmatic and energetic cluster of earthquakes located in central Alaska, just to the northwest of Mt. McKinley/Denali and adjacent to the Denali Fault. The Kantishna Cluster has no visible fault traces, and is often speculated to have a connection to the Denali Fault. The Kantishna Cluster is located at a hub of tectonic activity including Bering Block rotation to the west, bookshelf faulting to the northeast, and rotation of southern Alaska due to Pacific plate convergence to the south. The intention of this study was to broaden the knowledge base about the Kantishna Cluster and use the Mw 7.9 Denali Fault earthquake to find a relationship between the cluster and the Denali Fault Zone. Rate calculations in conjunction with z- and b-value changes show that the Denali Fault earthquake had little influence on the seismicity of the Kantishna Cluster, with the exception being the southern most portion closest to the Denali Fault. The highly variable background rate of seismicity in the Kantishna Cluster makes seeing changes in the seismicity difficult. Stress tensor inversions suggest a change in the stresses in the Kantishna Cluster; however, triangle diagram comparisons show that the pattern of earthquake mechanism types did not change. Coulomb stress change calculations predict small changes that were not observed in the data. Double difference hypocentral relocations show that the cloud of earthquakes collapses down to several distinct features. Seismicity trends resolved from hypocentral relocations made it possible to infer fault planes or planar structures in the region. The newly uncovered structures are utilized in the formation of a model involving two wedges to describe the seismicity in the Kantishna Cluster. The two wedges are being “squeezed” in opposite directions accommodating for compression across the cluster due to Pacific plate convergence.
    • Data (Appendix) for Book Chapter 43: Citizen Science Experience in Lumbini/Nepali for Sarus Cranes and Lesser Adjudants (Storks) with Regmi and Huettmann 2020 Hindu Kush Himalaya: Watersheds Downhill, Springer

      Karmacharya, D.K.; Duwal, R.; Yadav, S.K. (4/2/2020)
      This dataset consist of an appendix of citizen science data for the Sarus Crane and Adjudant storks in Lumbini and Jagdishpur Reservoir, Nepal. It's a plain MS Excel sheet.
    • Data (Appendix) for Book Chapter 33: Persistent Langur (Semnopithecus) decline in Nepal with Regmi and Huettmann 2020 Hindu Kush Himalaya: Watersheds Downhill, Springer

      Ale, Purna Bahadur; Regmi, Ganga Ram; Huettmann, Falk (4/2/2020)
      This dataset consists of an appendix of a GIS map of langur sp information in Nepal. The datasets are locations, presences and absences from a value-added GBIF.org query, transect data by the authors and literature data Details are specified in the book chapter by Ale et al in Regmi and Huettmann 2020. This is the first and best compiled data for this species in Nepal and shows national declines with large conservation management implications.
    • Data (Appendix) for Book Chapter 25: Museum Data holdings and Libraries in Nepal and Hindu Kush Himalaya region with Regmi and Huettmann 2020 Hindu Kush Himalaya: Watersheds Downhill, Springer

      Huettmann, Falk (4/2/2020)
      This compiled dataset consists of a value-added analysed GBIF data set in the wider Hindu Kush-Himalaya (HKH) region. The original data source is from individual national contributors found in GBIF. Data are used here for research purposes for the wider HKH region watersheds and to show institutional spread and distribution. Some major outside museums internationally are mentioned too. The dataset consists of MS Excel sheets Methods and details are specified in the book chapter by Huettmann in Regmi and Huettmann 2020. This is the first and best compiled data for the study area and is to set a start of such views and investigations towards a better and more fair access to data, as part of a better and more democratic decision-making process.
    • Data (Appendix) for Book Chapter 22: Rapid Assessment of Urban Birds and GIS models of Kathmandu and Pokhara, Nepal with Regmi and Huettmann 2020 Hindu Kush Himalaya: Watersheds Downhill, Springer

      Hansen, Lindsay; Huettmann, Falk (4/2/2020)
      This compiled dataset consists of a field data from rapid assessment of common birds found in urban areas of Kathmandu and Pokhara, Nepal, Hindu Kush-Himalaya (HKH) region.The dataset consists of 31 bird and animal species from a detection survey of 2 transects and photos in MS Excel sheets. It is overlaid with Open Street GIS map predictors for the study areas, and model predicted with GIS. We used the following 6 layers:waterways, natural places, shop polygons, land use, roads and highways and computed proximities for each in GIS. Methods and details are specified in the book chapter by Huettmann in Regmi and Huettmann 2020. This is the first and best compiled field and GIS data for the study area and is to set a start of such views and investigations towards a better and more fair access to data, as part of a better and more democratic decision-making process. Here an example is presented using avian species and GIS habitat layers.
    • Data (Appendix) for Book Chapter 37: 'Road, Railroad and Airport data for the Hindu Kush Himalaya region' with Regmi and Huettmann 2020 Hindu Kush Himalaya: Watersheds Downhill, Springer

      Huettmann, Falk (4/2/2020)
      This compiled dataset consists of an appendix of value-added merged GIS maps for roads, railroads and airports in the wider Hindu Kush-Himalaya (HKH) region. The original data source is from individual national DIVA-GIS files and used here for research purposes for the wider HKH region watersheds. Nations included are: Nepal, India, China, Buthan, Kazachstan, Tajikistan, Kyrgystan, Uzbekistan, Turkmenistan, Afghanistan, Iran, Laos, Myanmar, Thailand, Vietnam, Pakistan, Bangladesh and Cambodia. The dataset consists of 21zip archives of these nations also covering railways and airports. Methods and details are specified in the book chapter by Huettmann in Regmi and Huettmann 2020. This is the first and best compiled data for the study area.
    • Data (Appendix) for Book Chapter 28: Sarus Crane GIS Model with Regmi and Huettmann 2020 Hindu Kush-Himalaya: Watersheds Downhill, Springer

      Karmacharya, D. K.; Huettmann, F.; Mi, C; Han, X; Duwal, R; Yadav, SK; Guo, Y (4/2/2020)
      This dataset consist of an appendix of GIS model predictions of Sarus Cranes (GRus antigone Taxonomic Serial Number TSN: 176181) in Nepal. Details are specified in the book chapter by Karmacharya et al in G.R.Regmi and F. Huettmann 2020. This is the first model for this species and shows conservation management implications for the Terai landscape between Nepal and India.
    • Two Years of High-Resolution Airborne Imagery and Value-Added Products for the Barrow Environmental Observatory

      Cherry, Jessica; Lovick, Joe; Crowder, Kerri; Cunningham, Keith; Schroder, Julien (2013-12)
      Optical and thermal infrared imagery were collected by UAF at the Arctic NGEE Intensive sites in 2012 and 2013.
    • Science Plan for Regional Arctic System Modeling

      Roberts, Andrew (2010-11-01)
      Data and PDFs for "A Science Plan for Regional Arctic System Modeling" by Roberts, A. and Coauthors, 2010, IARC Technical Report 10-0001. The data collection includes the full report, a NetCDF file containing information used to illustrate and define the Arctic System in Figure 2, and supplemental PDFs of individual figures produced especially for the report. A URL is also provided that links to workshops where outcomes contributed substantially to this report. The purpose of the science plan is to provide a roadmap for understanding variability, complexity and change in the Arctic and it's adjacent environments, including understanding interconnectivity of the geosphere, biosphere and anthroposphere of the high north.
    • Final Report: International Workshop to Reconcile Methane Budgets in the Northern Permafrost Region

      McGuire, A. David; Kelly, Brendan P.; Guy, Lisa Sheffield; Wiggins, Helen (2017-05-18)
      An International Workshop to Reconcile Methane Budgets in the Northern Permafrost Region, organized by the Study of Environmental Arctic Change (SEARCH), was held in Seattle on 7-9 March 2017. The workshop was funded by the National Science Foundation, the National Aeronautics and Space Administration, the U.S. Geological Survey, and the U.S. Arctic Research Commission. The primary goal was to produce a plan for reconciling methane budgets in the northern permafrost region. Forty-two scientists, including representatives of the atmospheric, inland (wetland and lakes), marine (coastal and oceanic), and remote sensing communities studying methane dynamics participated in developing the research plan. Eleven of the participants were early career scientists, and nine of the scientists were from institutions outside the United States. The first day of the workshop included keynote presentations that provided atmospheric, inland, and marine perspectives on developing a plan to reconcile methane budgets. There were also keynote presentations on the role of remote sensing in reconciling methane budgets. The second day of the workshop was devoted to breakout groups that developed plans from disciplinary perspectives, followed by breakouts of mixed disciplinary groups that discussed all three plans. The breakout groups identified key uncertainties and near-term and longer-term priorities for addressing questions about methane dynamics in the northern permafrost region. Participants committed to completing a paper describing a roadmap for the synthesis plan by the end of 2017, and each of the groups developed plans to address, by the end of 2018, near-term priorities to reduce uncertainties in methane budgets. The longer-term priorities include addressing possible sensitivities of methane emissions to climate variability and change in the region and evaluating the degree to which changes in methane dynamics are detectable. To address these longer-term priorities, there is a need to organize extant methane data for the northern permafrost region so that studies using these data can evaluate how enhancements to the methane observation network would improve estimates of methane emissions and the detection of trends. The Permafrost Action Team of SEARCH will develop research summaries and briefs based on the follow-on activities from the workshop.
    • Operational Safety of Gravel Roads in Rural and Tribal Communities: Vulnerability to Structural Failures and GeoHazards

      Ibrahim, Ahmed; Sharma, Sunil; Kassem, Emad; Nielsen, Richard; Nasrin, Sabreena (2020-04-20)
      Of the 4.1 million miles of federal and state highways in the U.S., 2.2 million miles (or 54%) are unpaved, gravel roads. In the Pacific Northwest and Alaska, unpaved gravel roads provide critical transportation access, with some communities relying on just a single highway for access into and out of town. In such cases, these highways become a critical component of the infrastructure, and there is a need to ensure that safe access is always available to the communities. The Idaho highway database has been used to identify unpaved, gravel roads in Idaho that are critical for access to rural communities. Once identified, information regarding their existing condition has been used to assess their vulnerability and other impacts. The results of this study are considered an initial evaluation that relies on information that is readily available in the database. The project outcomes include a comprehensive literature review of unpaved roads including data produced from field visits. In addition, a questionnaire survey was sent to local jurisdictions authorities for investigating locations, reasons of road closures, and population size of the affected communities. Finally, 37 responses have been received by the research team indicating five rural communities that have experienced closures and isolation. The reasons for the closure of the unpaved roads were due to the lack of funding for snow removal, excessive dirt, unstable gravel roads, tornados, and heavy rains. The location of those communities was spread across the state of Idaho with corresponding populations range from 25 to 8,500 people.
    • Recent and Possible Future Changes in Permafrost

      Romanovsky, Vladimir (2013-10)
      Recent observations indicate a warming of permafrost in many northern regions with the resulting degradation of ice-rich and carbon rich permafrost. Permafrost temperature has increased by 0.5°C to 3°C in the northern Hemisphere during the last 30-40 years (Romanovsky et al., 2010).