• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Thermally enhanced bioventing of petroleum hydrocarbons in cold regions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Filler_D_1997.pdf
    Size:
    4.698Mb
    Format:
    PDF
    Download
    Author
    Filler, Dennis M.
    Chair
    Carlson, Robert F.
    Keyword
    Civil engineering
    Environmental engineering
    Microbiology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9474
    Abstract
    Petroleum-based contamination of the environment has and will likely continue to be a problem as long as oil and natural gas supply much of the world energy demands. In cold regions, where vast quantities of these fuels are extracted and used, climate and frozen soils limit remedial efforts to a few technologies. Bioventing has shown promise as a viable method for the remediation of spilled petroleum-based fuels in cold regions. An in situ study of bioventing with soil warming was conducted at a Fairbanks, Alaska site. The main purpose of this research effort was to compare the effectiveness of thermal enhancement techniques applied to bioventing. Objectives included (1) developing a suitable thermal insulation system(s) that would provide year-round bioventing of petroleum contaminated soils, (2) modeling of the thermal regime below three treatment areas, (3) relating monitoring and testing data to thermally enhanced biodegradation, and (4) presenting the information in a way that is useful to engineers, biologists and environmental scientists. Active soil warming with electrical heat tape beneath polystyrene insulation and sand and gravel overburden raised subsurface soil temperatures from the ground surface to the water table by as much as 15$\sp\circ$F. The actively warmed test plot was successfully heated year-round, preventing soil freezing and enhancing microbial activity. Soil gas, microbiological, and geochemical sampling data evidenced correlation between increased bioactivity and soil warming. Passively treated soils evidenced some winter increase in temperatures, although some periodic soil freezing did occur. Overall, biodegradation within both passively treated and untreated contaminated test plots was noticeably slower than within the actively warmed plot. Thermally enhanced bioventing successfully remediated hydrocarbon contamination in vadose zone soils at a subarctic site within two years. After oxygen, temperature appears to be the most important factor affecting microbial activity and biodegradation. Variable and low moisture contents did not seem detrimental to bioactivity.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1997
    Date
    1997
    Type
    Dissertation
    Collections
    Older Theses Not Clearly Affiliated with a Current College
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.