• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Production of vascular aquatic plants in wetlands of Alaska: A comparative study

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Larsen_A_1997.pdf
    Size:
    2.386Mb
    Format:
    PDF
    Download
    Author
    Larsen, Amy Sophia
    Keyword
    Botany
    Ecology
    Limnology
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9487
    Abstract
    I examined the effects of climate and hydrology on aboveground biomass of macrophytes in wetlands across Alaska by investigating the effects of latitude, July mean air temperature, lake type (open, periodically inundated, and closed), hydrology, and water and sediment chemistry on emergent and submersed vascular plant biomass to determine environmental variables that influenced wetland plant growth. I sampled aboveground biomass of macrophytes in four wetland complexes within Alaska: Kenai and Tetlin National Wildlife Refuges, Minto Flats State Game Refuge, and the Arctic Coastal Plain near Prudhoe Bay, Alaska. In addition to peak aboveground biomass, I also collected water and sediment samples from each lake that were analyzed for water temperature, color, alkalinity, turbidity, pH, orthophosphate, $\rm NO\sb3/NO\sb2$-N, NH$\sb4\sp+$, and total sediment C, N, and P. I found a quadratic relationship between emergent plant biomass and latitude. Minto, the second most northern site, had the greatest plant biomass, Prudhoe Bay, the most northern site had the least, and Kenai and Tetlin had moderate levels of biomass. I found a positive linear relationship between emergent plant biomass and July mean temperature, suggesting that on-site summer condition is important in predicting biomass. Submersed plant biomass was better related to alkalinity, turbidity and sediment P than to latitude, which suggests that climate is not as important in predicting submersed plant biomass as it is in predicting emergent plant biomass. Emergent plant biomass differed spatially and temporally, while submersed plant biomass showed no distinct patterns in variation across the landscape and with changes in hydrologic input. Many water and sediment chemistry variables differed among lake types and between flood regimes. Emergent plant biomass was associated with changes in water level as well as changes in water. Plant species composition differed among lake types and tended to change with flood regime as well. A separate suite of species occupied closed lakes, while open and periodically inundated lakes tended to contain more similar plant species. Both climate and hydrology appear to have a significant impact on emergent and submersed plant biomass and species composition in wetlands of Alaska. These spatial and temporal differences have direct influences on secondary producers living in wetlands of Alaska.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1997
    Date
    1997
    Type
    Dissertation
    Collections
    Biological Sciences
    Theses supervised by AKCFWRU

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.