• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Two-dimensional analysis of natural convection and radiation in utilidors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Richmond_P_1997.pdf
    Size:
    4.142Mb
    Format:
    PDF
    Download
    Author
    Richmond, Paul W., Iii
    Chair
    Zarling, John
    Committee
    Das, Debendra
    Gislason, Gary
    Kinney, Thomas
    Keyword
    Mechanical engineering
    Civil engineering
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9500
    Abstract
    Central heating plants are often used on large building complexes such as university campuses or military bases. Utilidors can be used to contain heat distribution lines and other utilities between a utility station and serviced buildings. Traditional thermal analysis of utilidors is one-dimensional, with heat transfer correlations used to estimate the effects of convection, radiation, and two-dimensional geometric effects. The expanding capabilities of computers and numerical methods suggest that more detailed analysis and possibly more energy-efficient designs could be obtained. This work examines current methods of estimating the convection and radiation that occur across an air space in square and rectangular enclosures and compares them with numerical and experimental data. A numerical model was developed that solves the energy, momentum, and continuity equations for the primitive variables in two dimensions; radiation between free surfaces was also included. Physical experiments were conducted with two 10-ft-long apparatuses; one had a 1-ft $\times$ 1-ft cross section, the other was 2 ft $\times$ 4 ft. Several pipe sizes and configurations were studied with the 1-ft $\times$ 1-ft apparatus. The 2-ft $\times$ 4-ft apparatus was limited to containing 4- and 8-inch insulated pipes. Corresponding numerical studies were conducted. Difficulties in modeling large enclosures or those with large temperature differences (Rayleigh numbers above 10$\sp7$) were encountered. Results showed good agreement between numerical and experimental average heat transfer rates, and for insulated pipe cases these results also compared well with rates obtained from one-dimensional analysis. A new effective conductivity correlation for air in a square enclosure was developed, and its use was demonstrated in numerical conduction solutions and compared with full numerical convection and radiation solutions and with experimental data. Reasonably good results were achieved when there was a small temperature difference across the air gap.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1997
    Date
    1997
    Type
    Dissertation
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.