• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Fracture and shakedown of pavements under repeated traffic loads

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zhang_T_1998.pdf
    Size:
    5.160Mb
    Format:
    PDF
    Download
    Author
    Zhang, Tinggang
    Chair
    Raad, Lutfi
    Committee
    Lee, Jonah H.
    Hulsey, J. Leroy
    Gislason, Gary A.
    Covey, David
    Keyword
    Civil engineering
    Mechanical engineering
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9510
    Abstract
    Under repeated external loads, engineering structures or objects may fail by large plastic deformation or fatigue. Shakedown will occur when the accumulation of plastic deformation ceases under repeated loads; the response of the system is then purely elastic. Fatigue and shakedown have been individually studied for decades and no attempt has been made to couple these two mechanisms in the mechanics analysis. In this study, an attempt is made to couple shakedown and fatigue in pavement mechanics analysis using numerical simulation. The study covers three main areas: fatigue, static shakedown, and kinematic shakedown analysis. A numerical approach to fatigue analysis is proposed based on elastic-plastic fracture mechanics. The amount of the crack growth during each load cycle is determined by using the J-integral curve and $\rm R\sb{-}curve.$ Crack propagation is simulated by shifting the $\rm R\sb{-}curve$ along the crack growth direction. Fatigue life is predicted based on numerically estabiished fatigue equation. The numerical results indicate that the algorithm can be applied to fatigue analyses of different materials. A numerical algorithm based on the finite element method coupled with the nonlinear programming is proposed in static shakedown analysis. In this algorithm, both the inequality and equality constraints are included in the pseudo-objective function. These constraints are normalized by the material yield stress and the reference load, respectively. A multidirectional search algorithm is used in the optimization process. The influence of finite element mesh on shakedown loads is investigated. An algorithm that utilizes eigen-mode to construct the arbitrary admissible plastic deformation path is proposed in kinematic shakedown analysis. This algorithm converts the shakedown theorem into a convex optimization problem and can be solved by using a multidirectional search algorithm. Fatigue behavior of a two-layer full-depth pavement system of asphalt concrete is analyzed using the proposed numerical algorithm. Fatigue crack growth rate is estimated and fatigue life is predicted for the system. Shakedown analyses are also carried out for the same pavement system. The comparison between the shakedown load and the fatigue failure load with respect to the same crack length indicates that the shakedown dominates the response of the pavement system under traffic load.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1998
    Date
    1998
    Type
    Dissertation
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.