• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Older Theses Not Clearly Affiliated with a Current College
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Development of a spatially distributed model of Arctic thermal and hydrologic processes (MATH)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zhang_Z_1998.pdf
    Size:
    3.795Mb
    Format:
    PDF
    Download
    Author
    Zhang, Ziya
    Chair
    Kane, Douglas L.
    Keyword
    Hydrologic sciences
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/9511
    Abstract
    A process based, spatially distributed hydrologic model with the acronym MATH (Model of Arctic Thermal and Hydrologic Processes) is constructed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions. The impetus for development of this model was the need to have spatially distributed soil moisture data for use in models of trace gas fluxes (carbon dioxide and methane) generated from the carbon-rich soils of this region. The model is applied against the data from the Imnavait watershed (2.2 $\rm km\sp2)$ and the Upper Kuparuk River basin (146 $\rm km\sp2)$ located on the North Slope of Alaska. Both point and spatially distributed data such as precipitation, radiation, air temperature, and other meteorological data have been used as model inputs. Based on the digital elevation data, one component of the model determines drainage area, channel networks, and the flow directions in a watershed that is divided into many triangular elements. Simulated physical processes include hydraulic routing of subsurface flow, overland flow and channel flow, evapotranspiration (ET), snow ablation, and active layer thawing and freezing. This hydrologic model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture, and ET over a watershed at each time step as well as discharge at any point(s) of interest along a channel. Modeled results of spatially distributed soil moisture content, discharge at gauging stations and other results yield very good agreement, both spatially and temporally, with independently derived data sets, such as Synthetic Aperture Radar (SAR) generated soil moisture data, field measurements of snow ablation, measured discharge data and water balance computations. The timing of simulated discharge results do not compare well to the measured data during snowmelt periods because the effect of snow damming on runoff generation is not considered in the model. It is concluded that this model can be used to simulate spatially distributed hydrologic processes within the arctic regions provided that suitable data sets for input are available. This physically based model also has the potential to be coupled with atmospheric and biochemical models.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 1998
    Date
    1998
    Type
    Dissertation
    Collections
    Older Theses Not Clearly Affiliated with a Current College
    Theses (Unassigned)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.