• Reconnaissance of the Distribution and Abundance of Schistosomatium Douthitti, a Possible Human Disease Agent in Surface Waters in Alaska

      Swartz, L.G. (University of Alaska, Institute of Water Resources, 1968-02)
      Studies during the summer and early fall of 1967 show that Schistosomatium douthitti, a blood fluke which may pose a health hazard to man, is well established in the surface waters and surrounding terrestrial environments in the Fairbanks area. It is almost certain that this situation exists throughout Interior Alaska. Ecologically and geologically, the lakes and ponds in which it has been found are the most abundant types in the Interior and both the specific lakes and the types which they represent are abundantly used by man. The life cycle of the worm in this area is probably sustained mostly in small mammals, especially in Microtus pennsvlvanicus but also in Clethrionomys rutilus. The infection certainly over-winters in the mammal host but probably also survives in the snail host under the ice. Although the fluke was only found in two of the nine mammalian species examined, it is probable that it occurs in other than Microtus pennsvlvanicus and Clethrionomys rutilus.
    • Recovery of rare earth elements from Alaskan coal and coal combustion products

      Gupta, Tushar; Ghosh, Tathagata; Akdogan, Guven; Bandopadhyay, Sukumar; Misra, Debasmita (2016-12)
      Owing to the monopolistic supply and rapid demand growth of Rare Earth Elements (REEs), cost effective and eco-friendly technologies for extraction of REEs from coal and coal byproducts are being widely explored. Physical separation tests, like magnetic separation, float-sink and froth flotation, were conducted at a laboratory scale, for identification and characterization of REEs in two Alaskan coal samples. The studies revealed that the samples are enriched in critical REEs, and have elevated REE concentrations as compared to average world coal estimates. The selected coal samples from Healy and Wishbone Hill regions were found to possess an overall concentration of 524 ppm and 286 ppm, respectively, of REEs in coal on ash basis and some density fractions have total REE concentrations as high as 857 ppm. Based on the characterization studies, detailed investigations were conducted to enrich the REEs and produce a concentrate for downstream extraction. A three-factor three-level Box-Behnken design for modeling and optimization of froth flotation revealed that the optimum flotation conditions for maximum REE Enrichment in the froth fraction was independent of collector dosage for both coal samples. The response variable was maximized at 4.2% solids and 32.7 ppm of frother dosage for Healy Coal sample and 10% solids and 37.9 ppm of frother dosage for Wishbone Hill Coal sample. A processing flowsheet for REE enrichment in clean coal is proposed, which aims at concentrating REEs in lower density fractions by a combination of dense medium separation and froth flotation processes. The overall REE recovery of the process is calculated to be 76% for Healy and 60% for Wishbone Hill with clean coal fractions enriched in REE concentrations above the cut-off value required for the commercial exploitation. The coals are bound to possess the potential to be used as a REE resource under favorable socio-economic and geo-political scenarios.
    • Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

      Rodin, Harry; Nassiri, Somayeh; Englund, Karl; Fakron, Osama; Li, Hui (Center for Environmentally Sustainable Transportation in Cold Climates, 2017-12)
      Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four size groups to find the optimum size. In Phase II, the select GFRP size group was incorporated at three different volumetric replacements of sand to identify the optimum replacement content. The mixtures were tested for compressive strength, flexural strength, toughness, and the potential for alkali-silicate reaction. Incorporation of GFRP in mortar proves promising in improving flexural strength and toughness in fiber-like shapes and 1–3% volumetric fractions.
    • The Reliability and Effectiveness of a Radar-Based Animal Detection System

      Huijser, Marcel P.; Fairbank, Elizabeth R.; Abra, Fernanda D. (Center for Environmentally Sustainable Transportation in Cold Climates, 2017-09)
      This document contains data on the reliability and effectiveness of an animal detection system along U.S. Hwy 95 near Bonners Ferry, Idaho. The system uses a Doppler radar to detect large mammals (e.g., deer and elk) when they approach the highway. The system met most of the suggested minimum norms for reliability. The total time the warning signs were activated was at most 90 seconds per hour, and likely substantially less. Animal detection systems are designed to detect an approaching animal. After an animal has been detected, warning signs are activated which allow drivers to respond. Results showed that 58.1–67.9% of deer were detected sufficiently early for northbound drivers, and 70.4–85% of deer were detected sufficiently early for southbound drivers. The effect of the activated warning signs on vehicle speed was greatest when road conditions were challenging (e.g., freezing temperatures and snow- and ice-covered road surface) and when visibility was low (night). In summer, there was no measurable benefit of activated warning signs, at least not as far as vehicle speed is concerned. Depending on the conditions in autumn and winter, the activated warning signs resulted in a speed reduction of 0.69 to 4.43 miles per hour. The report includes practical recommendations for operation and maintenance of the system and suggestions for potential future research.
    • Remotely accessible hardware-in-the-loop robot simulator

      Turan, Ali (2006-08)
      In this thesis, a novel and remotely accessible hardware-in-the-loop simulator (HILS) is developed for the real-time simulation of a variety of robotic systems for on-site and remote education and research. In that sense, the thesis contributes to the first known application of the HILS concept in the field of robotics and mechatronics that is remotely accessible. The HILS set-up incorporates most of the crucial hardware that takes part in the actual mechatronics/robotics system, thus enabling a more realistic simulation of the dynamics and control than would be possible with computer simulations. Any given robotic configuration can be simulated by using the developed HILS set-up, thus enhancing the flexibility and repertoire of expensive robotics laboratories. Besides the establishment of the hardware/software of the HILS setup, the major contribution of this thesis is the developed communication method between client and server that enables remote users to perform experiments on the HILS setup at the UAF Robotics and Control Laboratory. The main communication code is written in C/C++ with the use of wxWidgets. The protocol used in this study is TCP/IP for the sequential and error-free transmission of data. The MATLAB® Engine is used to establish the link between MATLAB® and the C/C++ code. For data capturing, a code is written in Python® programming language, which is compatible with ControlDesk. Finally, animations are prepared using the V-Realm Builder for the data collected from HILS experimentation. The experimentation results are sent to remote users as mat files, jpeg files and animations. The developed communication method can be used with all systems using MATLAB® Simulink® and is not limited to use with the HILS system only. Several case studies developed remotely (via the use of the internet) are also presented in the thesis as remote lab experiment and animation examples.
    • Report of research progress 1971-1973

      MIRL (University of Alaska Mineral Industry Research Laboratory, 1973)
    • Report of the Joint U.S.-Canadian Northern Civil Engineering Research Workshop

      Carlson, Robert F.; Morgenstern, N. R. (University of Alaska, Institute of Water Resources, 1978-03-20)
      The Joint Canadian-United States Northern Civil Engineering Research Workshop was held at the University of Alberta campus, Edmonton, Alberta on March 20 through 22, 1978. Over 40 participants from government, universities, and private practice from both the U.S. and Canada discussed northern civil engineering research for 2 1/2 days. The results of their effort are presented in this report. The nature of a report coming from spontaneous conversation will be somewhat uneven in coverage, language, and tone. However, we feel obligated to preserve the initial intent and language of the various workshop groups and each report should represent the original conclusion as nearly as possible. We acted as the principal instigators of the workshop and were ably assisted by an excellent group of workshop chairmen: Jack Clark, Lorne Gold, Charles Neill, Daniel Rogness, James Rooney, and Daniel Smith. We particularly want to acknowledge the assistance of the Boreal Institute for organizing and providing much of the administrative and secretarial support for the workshop, and the staff of the Institute of Water Resources for assisting with the organizing and publication processes. The workshop was sponsored by the National Science Foundation of the United States, the Department of Indian and Northern Affairs of Canada, the Boreal Institute and Department of Civil Engineering of the University of Alberta, and the Institute of Water Resources of the University of Alaska. R. F. Carlson N. R. Morgenstern
    • Report Supplement: Thermal and Cost Analysis of Thermal Envelopes for a Small Rural School

      Zarling, John; Strandberg, James S.; Maynard and Partch; HMS, Inc. (1983-01)
    • Research in advanced nuclear development and planning

      Kuca, Michael; Perkins, Robert A.; Schnabel, William E.; Barnes, David L. (2014-12)
      This project began as an examination of small and mini nuclear power plants as an emergent energy technology capable of sustained base-load power generation in northern climates. Literature review immediately demonstrated Alaska should remain current on small and mini nuclear power plants because commercial vendors are promoting their products to state leaders as certain solutions. Is Alaska prepared to receive, operate, and decommission advanced nuclear technology as an alternative to traditional hydrocarbon power plants? The graduate committee encouraged me to facilitate discussions with Alaska Center for Energy and Power (ACEP) leadership in reference to their 2010 study on small modular reactors. Gwen Holdman, Brent Sheets, and George Roe offered great encouragement for this project and allowed me to participated in nuclear related meetings with affiliates. In fall 2013, ACEP was hosting Idaho National Laboratory guests to discuss areas of common research interest. I was invited to prepare a short presentation of this project to Dr. Steven Aumeier, Director of Center for Advanced Energy Studies and Michael Hagood, Director of Program Development. ACEP and INL later determined a mobile mini reactor design for remote terrestrial deployment represents common research interests, and INL funded three UAF student fellowships at the Center for Space Nuclear Research (CSNR) Dr. Stephen Howe, Director of CSNR, allocated a team of six graduate fellows to explore terrestrial applications of a tungsten fuel matrix currently under design for nuclear thermal propulsion. UAF students selected for CSNR fellowship included Haley McIntyre, Alana Vilagi, and me. The team designed a Passively Operating Lead Arctic Reactor (POLAR), presented the POLAR design to INL staff and industry leaders and a subsequent poster was provided for the INE conference for Alaska Energy Leaders in October 2014. In addition to exceptional engineering experience, I was able to advance the graduate project in areas of technology, policy, economics, and energy infrastructure requirements needed to accept advanced nuclear technology. Concurrently, under a memorandum of agreement between the University of Alaska and Alaska Command ALCOM, I was able to advance the project to consider military applications of small modular reactors with ALCOM Energy Steering Group. It was in this context where I evaluated military installation energy usage in interior Alaska as compared to production of integral pressurized water reactors likely to emerge first in the commercial sector, and the ability of Alaska military to adopt this technology. As a side project, select courses of action were prepared and briefed to the commanding general of ALCOM should the nuclear option become attractive to the military. What began as an independent examination of small and mini nuclear power plants to satisfy a three-credit project requirement became an incredible collaboration among civilian, state, university, military, and industrial shareholders of the Alaska energy sector. Specific recognition for this report belongs to Haley McIntyre for her contribution to policy frameworks and as editor for this report, and Alana Vilagi for her contribution to process heat applications. The graduate committee along with ACEP leadership, INL-CSNR, and ALCOM should all be recognized as facilitators in this review of nuclear power in Alaska. The following report is presented in six chapters. The first two chapters attempt to introduce the reader to the current state of commercial nuclear energy in the nation as a pretext to developing the advanced reactor designs. Modifications to the existing framework are provided and the total cost of nuclear in Alaska is considered as opportunities and barriers to deployment are evaluated. As a conclusion, scenarios are developed to explain how this technology may contribute to our energy sector in the future. This project was unfunded, and its findings are intended to present a neutral examination of emergent nuclear design in the Alaska energy sector.
    • Research into the safety and efficiency of underground placer mining and frozen ground

      Huang, S.L. (University of Alaska Mineral Industry Research Laboratory, 1983-09)
      Some of the underground excavation problems encountered in arctic and subarctic environments associated with thermal disturbance are excessive settlement of ground surface and pronounced displacement around openings. This study investigated the possible links between the significant settlement. Ground temperature was found to be the most influential. An empirical equation was developed for the USBM gravel room to predict the effect of temperature on creep of frozen gravel. Separation of the roof gravel and silt was observed as steady heating process increased the gravel temperature by one degree. The temperature dependent material constants were estimated from the laboratory testings. The factors affecting the creep characteristics were temperature and applied stress level. The primary creep behavior of frozen gravel loaded under 18% of unconfined compressive strength at 25° and 29° could be predicted empirically.
    • Reservoir simulations integrated with geomechanics for West Sak Reservoir

      Chauhan, Nitesh; Khataniar, Santanu; Dandekar, Abhijit; Patil, Shirish (2014-07)
      Geomechanics is the study of the mechanical behavior of geologic formations. Geomechanics plays an important role in the life of a well. Without a proper understanding of the geomechanics of a reservoir, the projects associated with it may run into problems related to drilling, completion, and production. Geomechanics is important for issues such as wellbore integrity, sand production, and recovery in heavy oil reservoirs. While studying geomechanics, proper weight is given to mechanical properties such as effective mean stress, volumetric strain, etc., and the changes that these properties cause in other properties such as porosity, permeability, and yield state. The importance of analyzing geomechanics increases for complex reservoirs or reservoirs with heavy oil. This project is a case study of the West Sak reservoir in the North Slope of Alaska. Waterflooding has been implemented as enhanced oil recovery method in the reservoir. In this study, a reservoir model is built to understand the behavior and importance of geomechanics for the reservoir. First, a fluid model is built. After that, reservoir simulation is carried out by building two cases: one coupled with geomechanics and one without geomechanics. Coupling geomechanics to simulations led to the consideration of many important mechanical properties such as stress, strain, subsidence etc. Once the importance of considering geomechanical properties is established, different injection and production pressure ranges are used to understand how pressure ranges affect the geomechanical properties. The sensitivity analysis defines safer pressure ranges contingent on whether the formation is yielding or not. The yielding criterion is based on Mohr's Coulomb failure criteria. In the case of waterflooding, injection pressure should be maintained at 3800 psi or lower and production at 1600 psi or higher. And if injection rates are used as the operating parameter, it should be maintained below 1000 bbls/day. It is also observed that injection pressure dominates the geomechanics of the reservoir.
    • Resilient Modulus Characterization of Alaskan Granular Base Materials

      Li, Lin; Liu, Juanyu; Zhang, Xiong (Alaska University Transportation Center, Alaska Department of Transportation and Public Facilities, 2010)
    • Resolving Alaska's Water Resources Conflicts: Proceedings

      Dwight, Linda Perry (University of Alaska, Institute of Water Resources, 1985-11)
      Limnology -- Mining -- Hydroelectric Power Development -- Hydrology and Hydraulics -- Community and Regional Water Conflicts -- Appendix: Papers presented at the 1984 Annual Meeting
    • Resource estimation and analysis for offshore placer deposit using GIS technology

      Li, Hui (2004-12)
      In this thesis, an advanced GIS system is developed to manage, analyze and distribute Alaskan near-shore marine mineral deposition data. The developed GIS system is applied in a case study of the marine gold deposits in the offshore area of Nome, Alaska. The data collected during the previous phases of the research project are compiled using several computer application softwares such as ArcGIS8.3, Microsoft Access 2000 and others. Two improved relational geodatabases are created, in which various maps integrated with digital data sets are stored. The first database is known as the 'Integrated Geodatabase', which stores all the relative data collected in the Nome area, such as borehole data, bedrock geology, surficial geology, and geochemical data. database, a 'Regularized 2.5D Geodatabase', is generated based on the Geodatabase to store the layered orebody parameter for each regularized cell. The other Integrated With these GIS geodatabases, many important applications of data management and analysis, such as information query, data visualization, geostatistical analysis, gold distribution analysis, sediment distribution analysis, and resources estimation, are carried out readily for better understanding of Nome offshore mineral resources. Based on the enhanced GIS structure, a GIS-based website is developed using ArcIMS. Users can integrate local data sources with Internet data sources for display, query, and analysis in an easy-to-use web browser.
    • Resource estimation for platinum at Goodnews Bay, Alaska

      Tenorio, Victor Octavio (2006-08)
      Ore grade estimation is one of the most difficult problems when mining offshore deposits. In this research, a platinum deposit near Goodnews Bay, South-West of Alaska, was estimated with emerging techniques such as conditional simulation and support vector machines (SVM). Results of the estimation are presented and compared with a traditional estimation technique, such as the Inverse Distance Squared method. The area was divided in three clusters, based on the K-means method and geographical features. Also, Genetic Algorithm was used for appropriate data division. SVM parameters were optimized prior to the ore grade calculations. All estimations produced similar results for various cut-off grades, being the highest tonnages of platinum between 400 and 200 mg/m3. Reliability for conditional simulation was measured selecting blocks over 90% of probability for each cut-off value. SVM performance was evaluated using the Mean Square Error (MSE), the Mean Absolute Error (MAE) and the Correlation Coefficient Squared (R2). Using Pearson's correlation coefficient, SVM results presented a confidence of 95% in cluster 01, and 99% in clusters 02 and 03. Support vector machines seem to be an adequate tool for ore grade prediction, and it has a potential for its use in more complex geological and mining problems.
    • Response of pile-guided floats subjected to dynamic loading

      Quan, Zhili; 权致力; Chen, Gang; Metzger, Andrew; Hulsey, Leroy (2013-12)
      Pile-guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to time varying (dynamic) forces such as wind-generated waves and impacts from vessels. There is little design information available concerning the dynamic load environment to which the floats will be subjected. So far, the most widely acceptable method used in offshore structure design is the Kinetic Energy Method (KEM). It is a simplified method that is based on the conservation of energy. This approach is straightforward and easy to implement. However, in spite of its simplicity and straightforwardness, the method lacks accuracy. The intent of this project is to develop a rational basis for estimating the dynamic response of floating pile-guided structures, providing necessary insight into design requirements of the guide-piles. In this study, the Dynamic Analysis Method (DAM) will be used to model the dynamic responses of the system. MATLAB codes are written to help calculate the analytic and numerical values obtained from the dynamic models. For the purpose of validation, results from the two systems should be compared to a comprehensive dynamic analysis model created with the ANSYS AQWA Software.
    • The Response of Pile-Guided Floats Subjected to Dynamic Loading

      Metzger, Andrew; Quan, Zhili (Alaska University Transportation Center, Alaska Department of Transportation and Public Facilities, 2014)
    • Resume of high capacity gravity separation equipment for placer gold recovery

      Mildren, Jim. (University of Alaska Mineral Industry Research Laboratory, 1975-01)
      The phenomenal and meteoric rise in gold prices in the past few years has stimulated a renewed interest in domestic gold mining and many deposits once considered valueless or at best marginal at past gold prices are now potentially mineable at a profit and will become even more attractive if new and more appropriate technology can be found and applied. There have been many new innovations in gravity separation technology since the days of the gold dredge, and most of these have been developed outside of the U. S., where placer deposits are being mined and processed for various other minerals such as rutile, illeminite, zircon, cassiterite and even diamonds. Many of these newer methods could be very profitably applied to gold recovery in many present day placer or sand and gravel operations.
    • Retrodirective phased array antenna for nanosatellites

      Long, Justin W.; Thorsen, Denise; Kegege, Obadiah; Hawkins, Joseph; Mayer, Charles (2019-12)
      This thesis presents a S-band phased array antenna for CubeSat applications. Existing state-of the-art high gain antenna systems are not well suited to the majority of CubeSats, those that fall within the 1U (10 cm x 10 cm x 10 cm) to 3U (10 cm x 10 cm x 30 cm) size ranges and in Low Earth Orbit (LEO). The system presented in this thesis is designed specifically to meet the needs of those satellites. This system is designed to fit on the 1U face (10 cm x 10 cm) of a CubeSat and requires no deployables. The use of beamforming and retrodirective algorithms reduces the pointing requirements of the antenna, easing the strict requirements that high gain antennas typically force on a CubeSat mission. Additionally, this design minimizes volume and uses low cost Commercial-off-the-Shelf (COTS) parts. This thesis discusses the theoretical background of phased array theory and retrodirective algorithms. Analysis are presented that show the characteristics and advantages of retrodirective phased antenna systems. Preliminary trade studies and design analyses show the feasibility and expected performance of a system utilizing existing COTS parts. The preliminary analysis shows that an antenna system can be achieved with ≥8.5 dBi of gain, 27dB of transmitted signal gain, 20% Power Added Efficiency (PAE) within a 1 W to 2 W power output, and an 80° effective beamwidth. Simulation results show an example antenna array that achieves 8.14 dBi of gain and an 82° effective beamwidth. Testing results on a prototype of the front-end electronics show that with minimal calibration, the beamforming and scanning error can be reduced to 5°. The power consumption and signal gain of the electronics is also verified through testing. The CubeSat Communications Platform, a CubeSat mission funded through the Air Force Research Laboratory is in Phase A design to demonstrate this antenna system, along with other experimental payloads. This thesis includes a discussion of interface control, mission requirements, operations, and a recommended experiment sequence to test and verify the antenna system on orbit.
    • Retrofit Design of Drainage Structures for Improved Fish Passage: Literature Review

      Blevins, Vanessa; Carlson, Robert F. (1988-06)
      This report reviews existing literature on issues relevant to retrofitting culverts to mitigate fish passage barriers. The analysis of this information will set the stage for future laboratory experimentation on various retrofitting techniques. The topics in this report include a review of fish swimming capabilities, hydrologic factors involved in choosing a design flow, fish passage problems resulting from conventional culvert design, and potential retrofit solutions to these problems.