• Using experimental design and response surface methodology to model induced fracture geometry in Shublik shale

      Poludasu, Venkatasai Sri Chand; Ahmadi, Mohabbat; Hanks, Catherine; Awoleke, Obadare (2014-12)
      The Triassic Shublik Formation of the Alaska North Slope is a world-class resource rock and has been identified as the major source of many of the conventional hydrocarbon accumulations on the North Slope, including Prudhoe Bay. Recent interest in the Shublik as a potential shale resource play has highlighted the need for robust hydraulic fracture modeling and simulation of the interval, but little geologic information is available because of the remote nature of the region and the complex character of the Shublik. In this study, a methodology was developed for identifying the critical variables needed for accurate planning of a hydraulic fracturing treatment in a play like the Shublik where much of the geology remains unconstrained. These identified critical variables can be used to develop a proxy model that can be used in lieu of a numerical simulator. This study was conducted in two stages. The first stage used 2-level fractional factorial design to identify the statistical significance of the input variables on the simulated fracture geometry. This stage was conducted in three phases, each phase incorporating progressively more complex assumptions about geology. Using the three most significant variables identified from first stage, the second stage of this study applies Box-Behnken experimental design and response surface methodology for quantifying functional relationships between input variables and the predicted fracture geometry. A pseudo 3D numerical simulator (Fracpro PT) and MATLAB were used to develop proxy models. These proxy models, typically a polynomial equation, are an easier alternative to Fracpro PT and can predict the fracture geometry with very less computational time. The use of experimental design drastically reduces the number of simulations required to evaluate large number of variables. With only 137 simulations, 26 variables were ranked based on their statistical significance and a non-linear proxy model was developed. Predicted values of the fracture geometry obtained using the proxy models were in good agreement with the simulated values of the fracture geometry (R2 value of 99.39% for fracture length, R2 value of 99.54% for fracture height and R2 value of 98.17% for fracture width).
    • Using Geophysical Constraints To Determine Groundwater Travel Times, Seafloor Arrival Locations, And Saltwater Concentrations For Transition Zone Depths At Underground Nuclear Detonations On Amchitka Island

      Wagner, Anna M.; Barnes, David (2007)
      There is a great amount of radioactive material in the subsurface of Amchitka Island as a result from underground nuclear testing performed between 1965 and 1971. It is unknown how long it will take for the radionuclides to travel to the seafloor and the marine environment or where possible seepage zones will occur. The contaminant transport is greatly affected by the location of the transition zone (TZ) and the effective porosity, which were both determined by magnetotellurics (MT) in 2004. The hypothesis of this study was as follows: the groundwater travel times and seafloor arrival locations, can be estimated through groundwater modeling, with the location of the transition zone being estimated by magnetotellurics. An additional hypothesis is as follows: saltwater concentration for a TZ and the general subsurface characteristics can be quantified with groundwater modeling, using geophysical constraints in combination with saltwater and hydraulic head measurements. The groundwater travel times were estimated with groundwater modeling using the transition zone location as determined by MT. Shortest groundwater travel times are 1,200 and 2,100 years, at Long Shot and Cannikin respectively. At Long Shot, a decreased groundwater travel time of up to 55% could be seen when an enhanced hydraulic conductivity was included at the location of an assumed andesite sill layer. The seafloor arrival locations can be up to 1,000 and 2,100 m offshore at Long Shot and Cannikin respectively but will most likely occur closer to shore. This study was also successful at establishing the general characteristics of the subsurface by using geophysical constraints in combination with saltwater and hydraulic head measurements. The subsurface at Long Shot is isotropic or has mild anisotropy ratio of 1:2, which confirms the study by Fenske (1972). As represented in this study, this method has been shown to be valuable in determining the saltwater concentration of the TZ as determined by MT and can thus be used in further studies of islands and coastal areas.
    • Using polyethylene as a coagulant for reducing turbidity from placer mining discharge

      Fan, Ray-Her (University of Alaska Mineral Industry Research Laboratory, 1987)
      Placer gold mining locations on Gilmore and Crooked Creeks in the Fairbanks and Central/Circle, Alaska areas, respectively, were chosen as study sites for evaluation of a unique water treatment process. The physical and chemical impacts on water quality by placer mining were investigated by measuring the pH value, turbidity, and solids content of the slurry samples. Sedimentation tests, zeta potential measurements, and particle size distribution analyses were conducted as well. Also analyzed were mineralogical and chemical composition of the suspended ultrafine particles. Flocculation tests using polyethylene oxide (PEO) with adjunct additives were conducted in the laboratory. Variable parameters such as mixing speed and time, reagent dosages, pH values, as well as synergistic factors were studied. Economic factors and chemical consumption were evaluated and a field treatment plant was designed and proposed.
    • Using rate transient analysis and bayesian algorithms for reservoir characterization in hydraulically fractured horizontal gas wells during linear flow

      Yuhun, Pirayu; Awoleke, Obadare; Ahmadi, Mohabbat; Hanks, Catherine (2019-05)
      Multi-stage hydraulically fractured horizontal wells (MFHWs) are currently a popular method of developing shale gas and oil reservoirs. The performance of MFHWs can be analyzed by an approach called Rate transient analysis (RTA). However, the predicted outcomes are often inaccurate and provide non-unique results. Therefore, the main objective of this thesis is to couple Bayesian Algorithms with a current production analysis method, that is, rate transient analysis, to generate probabilistic credible interval ranges for key reservoir and completion variables. To show the legitimacy of the RTA-Bayesian method, synthetic production data from a multistage hydraulically fractured horizontal completion in a reservoir modeled after Marcellus shale reservoir was generated using a reservoir (CMG) model. The synthetic production data was analyzed using a combination of rate transient analysis with Bayesian techniques. Firstly, the traditional log-log plot was produced to identify the linear flow production regime, which is usually the dominant regime in shale reservoirs. Using the linear flow production data and traditional rate transient analysis equations, Bayesian inversion was carried out using likelihood-based and likelihood-free Bayesian methods. The rjags and EasyABC packages in statistical software R were used for the likelihood-based and likelihood-free inversion respectively. Model priors were based (1) on information available about the Marcellus shale from technical literature and (2) hydraulic fracture design parameters. Posterior distributions and prediction intervals were developed for the fracture length, matrix permeability, and skin factor. These predicted credible intervals were then compared with actual synthetic reservoir and hydraulic fracture data. The methodology was also repeated for an actual case in the Barnett shale for a validation. The most substantial finding was that for all the investigated cases, including complicated scenarios (such as finite fracture conductivity, fracturing fluid flowback, heterogeneity of fracture length, and pressure-dependent reservoir), the combined RTA-Bayesian model provided a reasonable prediction interval that encompassed the actual/observed values of the reservoir/hydraulic fracture variables. The R-squared value of predicted values over true values was more than 0.5 in all cases. For the base case in this study, the choice of the prior distribution did not affect the posterior distribution/prediction interval in a significant manner in as much as the prior distribution was partially informative. However, the use of noninformative priors resulted in a loss of precision. Also, a comparison of the Approximate Bayesian Computation (ABC) and the traditional Bayesian algorithms showed that the ABC algorithm reduced computational time with minimal loss of accuracy by at least an order of magnitude by bypassing the complicated step of having to compute the likelihood function. In addition, the production time, number of iterations and tolerance of fitting had a minimal impact on the posterior distribution after an optimum point--which was at least one-year production, 10,000 iterations and 0.001 respectively. In summary, the RTA-Bayesian production analysis method implemented in relatively easy computational platforms, like R and Excel, provided good characterization of all key variables such as matrix permeability, fracture length and skin when compared to results obtained from analytical methods. This probabilistic characterization has the potential to enable better understanding of well performance, improved identification of optimization opportunities and ultimately improved ultimate recovery from shale gas resources.
    • Using Snow Fences to Augment Fresh Water Supplies in Shallow Arctic Lakes

      Stuefer, Svetlana L. (2013-09)
      This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska’s oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the “baseline” conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake’s hydrological response to snowdrift melt, and cost assessment of snowdrift‐generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open‐water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21–29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, “North Slope Decision Support System (NSDSS) for Water Resources Planning and Management.” The results of these projects were implemented in the NSDSS model and added to the annual water budget. This implementation allows one to account for snowdrift contributions during ice road planning with the NSDSS and assists with mitigating those risks associated with potentially unfavorable climate and hydrological conditions (that is, surface storage deficit and/or low precipitation).
    • Using SuperDARN to predict polar irregularities that cause GPS scintillation

      Simon, Michelle R.; Bristow, William; Hawkins, Joe; Thorsen, Denise (2016-12)
      High levels of scintillation caused by strong magnetic storms can cause GPS devices to lose connection with the necessary satellites. Current research has shown a correlation between major magnetic storms and higher levels of the recorded Total Electron Content (TEC) seen in GPS receivers. The research presented in this thesis examines the idea that observations from the Super Dual Auroral Radar Network (SuperDARN) can be used to predict scintillation levels in GPS receivers at polar latitudes by using GPS scintillation values σφ and S4 that were collected from January, 2013 till November, 2015. These values were gathered from Poker Flat, Alaska, and McMurdo Station, Antarctica. Using various graphical methods the GPS data was compared with the recorded velocity, power and spectral width measurements from Kodiak, Alaska, and South Pole, Antarctica, SuperDARN sites. The SuperDARN values were ignored in the comparison if they did not fall within the specified GPS field of view, they were tagged with a ground scatter flag, or the data quality flag indicating they were erroneous. These bar and scatter graphs indicate that many of the irregularities identified by SuperDARN do not cause scintillation of a GPS signal. When the GPS scintillation variables are examined as a function of the SuperDARN signal parameters (power, velocity, and spectral width) only a small dependence is shown, demonstrating little correlation between the GPS scintillation variables and SuperDARN's variables. Based on these results SuperDARN cannot be used to predict higher levels of GPS scintillation in polar latitudes.
    • Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension

      Chen, Liangbiao; 陈 良彪; Lee, Jonah; Lee, Jonah; Chen, Cheng-fu; Kim, Sun Woo; Misra, Debasmita (2013-12)
      This thesis is devoted to the development of new, Generalized Interpolation Material Point Method (GIMP)-based algorithms for handling surface tension and contact (wetting) in fluid-solid interaction (FSI) problems at small scales. In these problems, surface tension becomes so dominant that its influence on both fluids and solids must be considered. Since analytical solutions for most engineering problems are usually unavailable, numerical methods are needed to describe and predict complicated time-dependent states in the solid and fluid involved due to surface tension effects. Traditional computational methods for handling fluid-solid interactions may not be effective due to their weakness in solving large-deformation problems and the complicated coupling of two different types of computational frameworks: one for solid, and the other for fluid. On the contrary, GIMP, a mesh-free algorithm for solid mechanics problems, is numerically effective in handling problems involving large deformations and fracture. Here we extend the capability of GIMP to handle fluid dynamics problems with surface tension, and to develop a new contact algorithm to deal with the wetting boundary conditions that include the modeling of contact angle and slip near the triple points where the three phases -- fluid, solid, and vapor -- meet. The error of the new GIMP algorithm for FSI problems at small scales, as verified by various benchmark problems, generally falls within the 5% range. In this thesis, we have successfully extended the capability of GIMP for handling FSI problems under surface tension in a one-solver numerical framework, a unique and innovative approach.
    • Using the USDA wind erosion equation for comparative modeling of natural and anthropogenic sources of particulates measured at the Fort Greely PM₁₀ monitoring station, Alaska, a case study

      Becker, Steven R.; Perkins, Robert; Barnon, David; Whitaker, Keith; Aggarwal, Srijan (2015-05)
      In April of 2010, the Alaska Department of Environmental Conservation (ADEC) opened a compliance case against the U.S. Army Garrison Fort Greely, Alaska (FGA), for then repeated failure to comply with a permit condition requiring the collection of one year of Prevention of Significant Deterioration (PSD)-quality data on ambient levels of particulate matter less than 10 microns in effective aerodynamic diameter (PM₁₀). During the monitoring period of 2012-2013, background levels of PM₁₀ were more than 80% the Alaska Ambient Air Quality Standards (AAAQS) for a total of seven days in the winter of 2012-2013. On March 17, 2014, ADEC requested that FGA provide substantive documentation that PM₁₀ exceedances observed during the monitoring period were of natural provenance and not from anthropogenic sources. In response to this request, the author used Geographic Information System (GIS) technology to analyze basic meteorological data and outputs from the USDA Wind Erosion Equation (WEQ) to generate a simple back-trajectory model for determining the sources and relative contributions to PM₁₀ experienced at a given receptor. Using this model, the author was able to show that the vast majority of PM₁₀ at Fort Greely was natural rather than anthropogenic in nature. The ADEC Division of Air Quality determined that results of this study constituted substantive documentation that PM₁₀ exceedances observed during the monitoring period were of natural provenance and not from anthropogenic sources, and issued a compliance case closure letter on June 20, 2014. In addition to the direct results of the study, the project also serves to demonstrate a low-complexity model that can be used to assess the relative contribution of anthropogenic and natural sources of PM₁₀ at a given receptor. Additionally, it can be used in complex situations as a screening tool to focus data collection efforts on significant sources of PM₁₀ and facilitate the prioritization of PM₁₀ sources for more precise quantitative dispersion or receptor models when precise quantitative data are required.
    • Utilization of Screw Piles in High Seismicity Areas of Cold and Warm Permafrost

      Hazirbaba, Kenan; Cox, Brady; Wood, Clinton (Alaska University Transportation Center, University of Arkansas, 2010)
    • Variation of the plasmaspheric field-aligned electron density and ion composition as a function of geomagnetic storm activity

      Reddy, Amani; Sonwalkar, Vikas S.; Watkins, Brenton; Hawkins, Joseph G.; Bogosyan, Seta (2015-08)
      Whistler mode (WM) radio sounding is a powerful new method that provides measurement of both field-aligned electron and ion densities from the satellite altitude (<5,000 km) down to 90 km. Using radio sounding data from the Radio Plasma Imager (RPI) onboard the IMAGE (Imager for Magnetosphere-to-Aurora Global Exploration) satellite, this thesis presents a systematic and efficient approach to implement the whistler mode radio sounding method and discusses the uncertainties in the measured plasma parameters. The sounding method is applied to obtain the first measurements of plasmaspheric field-aligned electron density and ion composition as a function of geomagnetic storm activity during the mid-August to September 2005 period. This period included several geomagnetic storms of varying strength that occurred in succession. The plasmapause was located at L~2.4 during the onset and main phases of the storms. The whistler mode sounding results were augmented by measurements from the CHAMP and DMSP satellites, and ground ionosonde stations during the same period. On the day-side, at L~2, as a function of storm activity the following general results were found: (1) The electron density, relative ion concentrations, and O⁺/H⁺ transition height underwent temporal changes as a function of geomagnetic storm activity, and each species had different temporal behavior thus indicating different recovery times. (2) O⁺/=H⁺ transition height increased by ~200-300 km during the onset, main and early recovery phases of the storms. (3) Variation in the electron density below the O⁺=H⁺ transition height was different than that above. (4) Electron density at F2 peak increased during the onset or main phase of storms followed by a decrease in the recovery phase. (5) Electron density above O+=H+ transition height increased either in the onset or on the first day of recovery phase followed by a decrease. (6) αH₊ decreased during the onset, main and/or early recovery phases of storms; αo₊ increased in the early recovery phases of the storms; αHe₊ varied in a complex manner but in general there was an increase in αHe₊ during the onset phases and decrease in αHe₊ during the recovery phases of the storms. (7) When storms occurred in succession in an interval of roughly less than a day, the latter storms had little or no effect on the electron density and/or ion composition. On the night-side, WM sounding data was sparse. In the case of one moderate storm, we found that 3 days after the storm, at L~2.3, electron density at F2 peak and relative ion concentrations (at all altitudes) were comparable to those before the storm, whereas electron density above O⁺=H⁺ transition height decreased. WM sounding results for the day-side and night-side were in agreement with measurements from CHAMP (~350 km) and DMSP (~850 km). Whistler mode sounding results coupled with physics-based models will allow: (a) investigation of the role of thermospheric winds, dynamo electric fields, and storm time electric fields in causing the variations in electron and ion densities and (b) testing of current theories and validating physics-based models of the thermosphere-ionosphere-magnetosphere.
    • Verification of Job Mix Formula for Alaskan HMA

      Li, Peng; Liu, Jenny (Alaska University Transportation Center, Alaska Department of Transportation and Public Facilities, 2014)
    • Volumetric heat transfer via constructal theory, and its applications in permafrost and hydrogen energy storage

      Kukkapalli, Vamsi Krishna; Kim, Sun Woo; Lin, Chuen-Sen; Das, Debendra (2016-05)
      Constructal theory is widely used as a powerful tool in designing of engineering systems (flow configurations, patterns, geometry). This theory is observed in nature and its principles are applicable to general engineering. Constructal theory encompasses a wide range of space in the "design", drawing from each and every field from engineering to biology. The universal design of nature and the constructal law unify all animate schemata such as human blood circulatory systems, and inanimate systems, such as urban traffic and river basins. The proceeding research applies the overlying theories of constructal theory to the two different systems in order to achieve best thermal performance phenomena. The first is stabilization of roadway embankments in the permafrost regions with design modifications in existing thermosyphon evaporators with tree structure designs, and defining the optimal spacing between two neighboring thermosyphons based on thermal cooling phenomena. This research utilizes constructal law to the generation of tree-shaped layouts for fluid flow, so that the flow structures use the available space in optimally. The intention here is the optimization of geometry of the flow system. This begins with the most simple cases of tree-shaped flows: T- and Y-shaped constructs, the purpose of which is to create a flow connection between one point (defined as a "source" or "sink") to an infinity of points (via a line/area/volume). Empirically speaking, tree-shaped flows are natural examples of selforganization and optimization. By contrast, constructal law is theory which states that flow architectures such as these are the evolutionary results of nature which tend toward greater global flow access. Tree-shaped flows can be derived from this constructal law. The mathematical simulation revealed that there exists an optimal spacing between two neighboring thermosyphons, and the tree structures perform better than the existing configuration in terms of thermal cooling. The second part of the research is to find an effective way to reject heat released from the metal hydride powder to the outer environment during the hydrogen absorption process. The main objective of this investigation is to minimize the time required for the absorption process, and to reduce the hotspot temperature by determining the optimal aspect ratio of rectangular fins, while the total volume of fins used is kept constant. The intension of using constructal theory in this part of research is to find the optimal geometrical parameters (length, width) of the fin structure for better thermal performance of the metal hydride reactor system. The simulations revealed that there exists an optimum aspect ratio of rectangular fins for accelerating heat rejection and lowering the hotspot temperature in a cylindrical metal hydride reactor. Constructal theory is supremely adapted for use in 2-dimensional and 3-dimensional design for heat transfer structures, as it allows for incorporation of minute analysis of the interior structure with the goal of optimizing for heat transfer. In its application in the realm of engineering, every multidimensional solid structure that is to be cooled, heated or serviced by fluid streams must be vascularized. By this definition, 'vascularization' includes, however is not limited to, structures such as trees, geometrical spacing, and solid walls. Here, every geometric detail will be sized and positioned to achieve maximum efficacy from an engineering design point of view. Furthermore, via design morphing we can achieve low resistances in flow structures which are applicable in cooling and heating applications. An example is that of a ground-source heat pump design where the piping design is morphed by constructal law and spaced in an optimal way to achieve maximum thermal efficiency when extracting heat from the ground.
    • Washability characteristics of low-volatile bituminous coal from the Bering River field, Alaska

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1969)
      Two samples of low-volatile bituminous coal from Bering River Coal Field were sized to 0.525" x 3, 3 x 6, 6 x 10, 10 x 20, and 20 x 35 mesh and their washability characteristics studied at specific gravities ranging from 1.29 to 1.55. The results showed that the coals can be up-graded to an ash content as low as 2% with conventional cyclone heavy media process. A product containing less than 1% ash can be obtained from these coals with surprisingly high yields, ranging from 50 to 95% depending on the ash content desired in the washed coal, and the characteristics of the raw coal. The experimental work proves the technical feasibility of preparation of the coal form metallurgical use and as low ash carbon raw material. Further Pilot Plant testing would be required in the fields of preparation and utilization in order to design the final plant for ascertaining the economic feasibility.
    • Water Balance of a Small Lake in a Permafrost Region

      Hartman, Charles W.; Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1973-09)
    • A Water Distribution System for Cold Regions: The Single Main Recirculation Method: An Historical Review, Field Evaluation, and Suggested Design Procedures

      Murphy, R. Sage; Hartman, Charles W. (University of Alaska, Institute of Water Resources, 1969-03)
      Students and residents of the Arctic are familiar with the many problems peculiar to the geographical area. This monograph will consider an adequate, safe, and reliable water distribution system. Water supply, together with housing, transportation, and waste disposal, are demanded when a remote area becomes established as a permanent settlement. As long as the population of the North was widely distributed in small mining camps, villages, and individual cabins, water distribution systems were not necessary, as shallow wells and nearby streams adequately served most needs. With the rapidly increasing settlement of the vast lands of the North, the population is being centered in communities rather than distributed over large areas. The world population explosion will undoubtedly contribute to increasing immigration into Arctic and sub-Arctic areas. These changes have already created a need for modern water distribution systems, a need which will become more critical with time.
    • Water quality from rainwater catchments throughout Alaska: looking at contaminants in catchment materials

      Hart, Corianne Irene (2003-12)
      A field study which focused on linking materials used in rainwater catchments to the quality of water they produce was conducted throughout Alaska in the summer of 2003. The importance of this project stems from the fact that many families throughout Alaska depend on rainwater catchment systems to provide water for washing, cleaning, cooking and/or drinking purposes. After a core group of participants were identified, samples were periodically collected from participants' water taps and were analyzed for a suite of contaminants that included metals (e.g., Pb and Zn), organics (e.g., volatile organic compounds) and bacteria. Based on variables, such as construction materials, the frequency of rainfall, the amount of water collected and the duration of storage, we evaluated the effectiveness of various catchments for providing safe drinking water. This fieldwork, coupled with a companion document addressing best management practices for rainwater catchments, provides valuable information for owners of small systems seeking to use rainwater catchments in Alaska. The conclusions of the study were that zinc concentrations of water collected at the tap were affected by roof and tank material, lead concentrations of water collected at the tap were affected by roof material, and copper concentrations of water collected at the tap were affected by pipe material.
    • Water Quality in Alaskan Campgrounds

      Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1973-01)
      This report presents an evaluation of water quality in Alaskan Campgrounds using laboratory determinations and on-site evaluations. In general, ground water quality was found to be excellent and surface water quality unacceptable for human consumption and total body contact recreation. The most pressing need was found to be the provision of an approved drinking water supply for each campground. The· environmental health aspects of campgrounds were found to be largely neglected. Many of the sewage systems are inadequate resulting in pollution of the ground and surface water. Solid waste was found to be stored and disposed of by unacceptable methods. Finally, many campgrounds are located in swampy areas or located in areas subject to annual flooding.
    • Water Quality in the Great Land, Alaska's Challenge: Proceedings

      Huntsinger, Ronald G. (University of Alaska, Institute of Water Resources, 1987-10)
      Administering water quality programs -- Surface water issues -- Groundwater issues -- Sediments and resource development
    • Water security in the rural North: responding to change, engineering perspectives, and community focused solutions

      Penn, Henry J. F.; Schnabel, William E.; Loring, Philip A.; Gerlach, S. Craig; Dotson, Aaron A.; Barnes, David L. (2016-08)
      This project explores the capacity of rural communities to manage their water resources in a changing climate, environment and society. Using water resources as a lens through which to evaluate the effects of social and environmental changes on Alaska’s rural communities, and working from conversations with key community members including city planners and infrastructure operators, this research develops theoretical frameworks for increasing community capacity. The prospect of developing community capacity, and more specifically water resources management capacity, in order to respond to societal and climatic change is a present concern for rural communities, and is becoming increasingly so in today’s fiscally challenged environment. Many rural water managers in Alaska are challenged by aging systems designed and built over 20 years ago, and are now operating well beyond their design life. While the configuration of existing systems varies across Alaska, a common suite of problems exists; regular breakdowns, failure to achieve regulatory standards, wide variability of raw water quality, low payment rates, and historically high electricity and fuel prices. These systems are also operating during a period of historically high deficit between community needs and available grant funding at both a State and Federal level. Existing theoretical frameworks for exploring the impacts of change on regional water security (i.e. resilience and vulnerability) are informative heuristics for triage of impacts at the individual community level. Presently, however, there is little consideration given to water security solutions that do not involve the construction of a new system. This research proposes that the focus upon “new system solutions” limits available solutions for improving security at both the local and regional levels. Further this research seeks to understand the extent to which “new utility solutions” create additional capacity at both the community and regional level to respond to change. At the core of this work are informal interviews and participant observation research in 11 coastal communities in Bristol Bay and Northwest Arctic regions of Alaska.
    • Water/Wastewater Evaluation for an Arctic Alaskan Industrial Camp

      Tilsworth, Timothy (University of Alaska, Institute of Water Resources, 1973-04)
      Discovery of a huge oil field at Prudhoe Bay in the late 1960's resulted in a great deal of industrial activity on the North Slope of arctic Alaska. This flurry of industrial activity was accompanied by environmental concern across the nation. The fact that Alaska was "the last frontier” placed it high on the list for ecological scrutiny.