• Evaluation of Water Research Needs in Alaska : Project Completion Report

      Behlke, Charles E. (University of Alaska, Institute of Water Resources, 1968)
      The water resource research requirements for Alaska revolve around the needs of a rapidly expanding population and industrial growth in an unpopulated country. It appears that many of the problems which have been researched elsewhere must be restudied in Alaska because of the extremes of climate which Alaska exhibits . Most of the southern coastal areas of the State exhibit from 70 to 350 inches of runoff per year and in much of the northern part of the State permafrost to great depths and seasonal frost lock virtually all of the water in the solid state for a major part of the year. Alaska Is proving to be an area with vast petroleum reserves. These reserves are being brought into production and are resulting in the development of previously unpopulated areas. The proper management of previously untouched waters requires knowledge of the nature of the existing resources and then an evaluation of the probable effects of alternative water uses in order to optimize the desirable use of Alaskan water resources. This evaluation of present conditions and the analysis of future possible uses provide vast amounts of required research.
    • Final report - mineral resources of northern Alaska

      Heiner, L.E.; Wolff, E.N. (University of Alaska Mineral Industry Research Laboratory, 1968)
      PURPOSE. This is the final report on the work authorized on July 29, 1967, by the NORTH Commission. The purpose is to inventory mineral resources in northern Alaska and to delineate favorable mineral areas, insofar as possible. Later, a mineral policy study was added and a survey of available airborne geophysics. The Alaska Railroad made possible the large scale dredging at Fairbanks and became a feeder to all interior districts. It allowed the building of military bases during and after World War II. Freight moves predominantly north.
    • Known and potential ore reserves, Seward Peninsula, Alaska

      Lu, F.C.; Heiner, L.E.; Harris, D.P. (University of Alaska Mineral Industry Research Laboratory, 1968)
      The study utilizes all available information pertaining to the resources of the Seward Peninsula in an attempt to present factual data as well as to predict by statistical means the resources yet to be found.
    • Inherent and Maximum Microbiological Activity in Smith Lake : Project Completion Report

      Burton, S. (University of Alaska; Institute of Water Resources, 1968)
      POPULAR ABSTRACT: Bacterial populations were examined in a sub-Arctic lake to augment the understanding of the flow of organic material and other nutrients through these waters. Several micro-organisms were isolated, capable of converting atmospheric nitrogen into biologically available forms. Also organisms capable of removing organic materials at very low temperatures, psychrophiles, were isolated. Enzymes from these unusual organisms were examined to determine what allows these unusual activity at low temperatures. The activities of these enzymes were not found to be unusual.
    • Treatment of Low Quality Water by Foam Fractionation

      Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1968)
      The removal of iron from Alaskan groundwaters by a foam fractionation technique has been shown to very effective. Finished waters with less than 0.2 mg/l iron have been produced from raw waters containing in excess of 25 mg/l. Ethylhexadecyldimethylammonium bromide was used as the principal foaming agent. Low temperature oxidation of the ferrous iron tended to interfere with the removal rates, but high temperature oxidation followed by low temperature fractionation did not exhibit the same adverse influence. All experiments were performed in four-liter laboratory batch columns. For the Alaskan environment batch processing is thought to have advantages over continuous processes because of the need for uncomplicated equipment.
    • Distribution of certain minor elements in Alaskan coals

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1968)
      Seventy-five samples of coal from Northern Alaska, Jarvis Creek, Nenana, Matanuska, Kenai and Bering River Coal Fields were analyzed by quantitative spectrochemical procedures f o r lead, gallium, copper, barium, beryllium, nickel, titanium, vanadium, zirconium, cobalt, chromium, germanium, and tin. Other elements, of significance, identified from the spectrograms were, gold and silver identified in certain Nenana coals and silver in coals from Chickaloon in the Matanuska field, in concentrations up to several parts per million of coal ash. Forty-one of the above samples were sink-floated to study the distribution of minor elements between the organic and inorganic phases of the coals. Relative affinities of the minor of the minor elements to the organic matter in the coal is discussed.
    • Reconnaissance of the Distribution and Abundance of Schistosomatium Douthitti, a Possible Human Disease Agent in Surface Waters in Alaska

      Swartz, L.G. (University of Alaska, Institute of Water Resources, 1968-02)
      Studies during the summer and early fall of 1967 show that Schistosomatium douthitti, a blood fluke which may pose a health hazard to man, is well established in the surface waters and surrounding terrestrial environments in the Fairbanks area. It is almost certain that this situation exists throughout Interior Alaska. Ecologically and geologically, the lakes and ponds in which it has been found are the most abundant types in the Interior and both the specific lakes and the types which they represent are abundantly used by man. The life cycle of the worm in this area is probably sustained mostly in small mammals, especially in Microtus pennsvlvanicus but also in Clethrionomys rutilus. The infection certainly over-winters in the mammal host but probably also survives in the snail host under the ice. Although the fluke was only found in two of the nine mammalian species examined, it is probable that it occurs in other than Microtus pennsvlvanicus and Clethrionomys rutilus.
    • Handbook of geophysical prospecting methods for the Alaskan prospector

      Heiner, L.E. (University of Alaska Mineral Industry Research Laboratory, 1969)
      This Handbook has been compiled to acquaint the Alaskan prospector with the more recent application of geophysics for locating economic metallic minerals. For this reason, well documented subjects such as the use of the dip needle and mineral detectors have been excluded.
    • A Ground Water Quality Summary for Alaska: a Termination Report

      Kim, Steve W.; Johnson, Phillip R.; Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1969)
      The expanding economic activity throughout the State of Alaska has created an urgent demand for water resource data. Ground water quality information is of particular interest since this is the most used source for domestic and industrial supplies. Many agencies and individuals have accumulated large quantities of data but their value has been marginal due to a lack of distribution to potential users. It was the original intent of the work reported herein to gather, collate, and publish all ground water quality data available in the files of university, state, and federal laboratories. Soon after the inception of the project the major contributor, the U.S. Geological Survey, found it was administratively impossible to contribute either the monies or the data necessary to accomplish the ultimate goals of the project -- An Atlas on Alaskan Ground Water Qualities. At the time the above decision was made the Institute felt too much information was on hand to allow it to lay fallow. Therefore, this report was prepared, In a more limited scope than originally planned, to fill the need for a readily available source of information.
    • Heavy minerals in Alaskan beach sand deposits

      Cook, D.J. (University of Alaska Mineral Industry Research Laboratory, 1969)
      Beach sand deposits along Alaska's shoreline have been prospected and worked for their precious metal content since the time of Russian occupation. Areas such as the Nome Beaches of the Seward Peninsula have been very productive, and in recent years exploration has proceded to include off shore extensions of these deposits. Evaluation of associated heavy mineral contents of these deposits, however, have been cursory and in most cases neglected entirely. In view of the thousands of miles of Alaskan coastline with known mineral provinces on adjacent land; much information is needed concerning the origin of mineral constituents, evaluation of past and present beach deposits and possibilities of off shore extensions of tho continental shelf. This report is concerned with samples of beach sand material submitted to the Mineral Industry Research Laboratory by individuals. These samples, taken from various locations, cannot be viewed as programs designed to delineate reserves from the respective areas. They should be considered as reconnaissance samples to indicate the mineral constituents present and the need for more comprehensive evaluation. Systematic and complete evaluation of all mineral constituents, including precious materials, is a major undertaking because of the erratic nature of the deposits. Special studies are required concerning sampling techniques, mining methods, recovery systems and marketing procedures. It is, therefore, beyond the financial capabilities of most individuals and requires the involvement of government agencies or corporations to obtain the necessary data to determine economic feasibility .
    • Practical Application of Foam Fractionation Treatment of Low Quality Water

      Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1969)
      The foaming technique has found extensive use for organic, ion, and colloid separations from liquid systems. When used to remove an ion or a colloid, a specific surface-active agent of opposite charge to the particle being removed is added to the solution and floated to the surface of the suspension by gas bubbles. The ion or colloid is adsorbed at the bubble interfaces and collected within the froth formed at the surface of the container. The froth, with the contaminant or concentrated material (depending upon the process and its use) is physically separated at this point and further processed or discharged to waste. The clarified bottom liquid is therefore suitable for other uses. In the water supply field, the bottom liquid is the important product that is to be recovered and used for consumptive purposes. Much research has been performed on the theory and applications of various adsorptive bubble separation methods. These studies are well documented in the literature for various industries and applications which might take advantage of the method. It was not the intent of this work to amplify the findings of other research. The project was undertaken in an attempt to scale-up laboratory experiments previously performed at this Institute. No extension of theory, new processes, or revolutionary findings were attempted.
    • Annual report of research progress

      MIRL (University of Alaska Mineral Industry Research Laboratory, 1969)
      The great importance of minerals to a state's sound economy can be no better illustrated than by the discovery of oil and gas in Alaska in 1957 in the Kenai Peninsula. This event has led to the establishment of local basic and secondary industries which in turn will enrich the coffers of the state. In a parallel manner, the discovery of oil and gas on the North Slope in 1968 will not only produce basic and allied industries but will also be a catalyst assisting the development of other mineral resources to provide a diversification of industry--so important to the long range economic strength of a state. Also, further economic development of mineral resources is, to a large degree, dependent on mineral science research in the same way that research and development were necessary to develop the jet engine and hence, give a break-through in air transportation; thus, without geological and mineral processing research, mines cannot continue to be found and developed. The following pages will provide evidence of a significant contribution toward the shortening of the knowledge gap in mineral search instrumentation, gold size distribution, coal processing, prospector education, resource evaluation, and exploration oriented computer techniques. The demand by the Alaskan public, industry, and governmental agencies for this information has justified the reprinting of several of this year's research reports. This response by industry and the public has given increased impetus to the goal of MIRL: to aid in the expansion of Alaska's mineral economy through a program of applied and basic research--to seek knowledge today for use tomorrow. Earl H. Beistline, Dean, CESMI
    • Handbook for the Alaskan Prospector

      Wolff, Ernest (Mineral Industry Research Laboratory, University of Alaska, Fairbanks, 1969)
      It is hoped that this book will be of value to many different classes of men engaged in the search for mineral deposits. These classes might include the experienced practical prospector who would like to learn something of geology; the young geologist who needs information on practical prospecting; the novice who needs a comprehensive reference; and the all around experienced exploration engineer or geologist who might need to refer to some specialized technique, look up a reference in the bibliography, or read a resume of the geology of a particular area, Because this book is aimed at so many different classes, different chapters are written assuming different levels of learning and experience. This, no doubt, will prove troublesome at times, but it is believed to be the best way to insure that the information contained in each chapter will reach with maximum effectiveness the group for whom it is intended.
    • Washability characteristics of low-volatile bituminous coal from the Bering River field, Alaska

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1969)
      Two samples of low-volatile bituminous coal from Bering River Coal Field were sized to 0.525" x 3, 3 x 6, 6 x 10, 10 x 20, and 20 x 35 mesh and their washability characteristics studied at specific gravities ranging from 1.29 to 1.55. The results showed that the coals can be up-graded to an ash content as low as 2% with conventional cyclone heavy media process. A product containing less than 1% ash can be obtained from these coals with surprisingly high yields, ranging from 50 to 95% depending on the ash content desired in the washed coal, and the characteristics of the raw coal. The experimental work proves the technical feasibility of preparation of the coal form metallurgical use and as low ash carbon raw material. Further Pilot Plant testing would be required in the fields of preparation and utilization in order to design the final plant for ascertaining the economic feasibility.
    • A Water Distribution System for Cold Regions: The Single Main Recirculation Method: An Historical Review, Field Evaluation, and Suggested Design Procedures

      Murphy, R. Sage; Hartman, Charles W. (University of Alaska, Institute of Water Resources, 1969-03)
      Students and residents of the Arctic are familiar with the many problems peculiar to the geographical area. This monograph will consider an adequate, safe, and reliable water distribution system. Water supply, together with housing, transportation, and waste disposal, are demanded when a remote area becomes established as a permanent settlement. As long as the population of the North was widely distributed in small mining camps, villages, and individual cabins, water distribution systems were not necessary, as shallow wells and nearby streams adequately served most needs. With the rapidly increasing settlement of the vast lands of the North, the population is being centered in communities rather than distributed over large areas. The world population explosion will undoubtedly contribute to increasing immigration into Arctic and sub-Arctic areas. These changes have already created a need for modern water distribution systems, a need which will become more critical with time.
    • Southeastern Alaska mineral commodity maps

      Heiner, L.E. (University of Alaska Mineral Industry Research Laboratory, 1970)
      Continued interest by exploration companies in a Southeastern Alaska resource study in progress by the Mineral Industry Research Laboratory has prompted the release of some of the maps prior to the completion of the study. A report on the study should be available for distribution during the summer of 1970, and will contain a complete tabulation of all mineral properties and prospects contained in the literature or staked under the mining laws. In addition, the report will contain a description of U. S. Bureau of Mines mining districts, a summary of the geology, and thoughts pertaining to possible controls for ore deposits in the area. The commodity maps contained in this packet represent only those properties currently listed in the State Division of Mines and Geology Kardex System. Information pertaining to all properties tabulated in this system for Southeastern Alaska has been digitized and stored on magnetic tape. The maps were plotted by computer at a scale of approximately 1 " = 20 miles for overlay purposes. The computer utilized the storage and retrieval file of Alaska mineral information developed by the Mineral Industry Research Laboratory (see M. I. R. L. Report No. 24) and the STAMPEDE and contouring program maintained by the University of Alaska.computer center. Each map i s a composite of individually plotted quadrangle maps using the U. S. Geological Survey coordinate system described in U. S. Geological Survey Bulletin 1139 for property location. At this scale, there i s little error in location.
    • Fortran IV program for processing geochemical sediment data, 34 p.

      Heiner, L.E. (University of Alaska Mineral Industry Research Laboratory, 1970)
      A general computer program has been written to process geochemical data resulting from the analysis of up to 34 trace elements per sample. This program will: 1. Produce a table for direct inclusion in formalreports. The table contains the map number and field number of the geochemical samples, the corresponding elemental values and a table giving descriptive data about the sample. Prior to printing, the samples are arranged according to map number for easy correspondence between the table of values and to the geochemical map. 2. Compute the average value for each element, normally and lognormally. 3. Compute the standard deviation for each element, normally and lognormally. 4. Compute the threshold value for each element, normally and lognormally. 5. Compute the anomalous concentrations for each element, normally and lognormally. 6. Draw lognormal, or standard histograms for each element. All geochemical samples taken by the Alaska Division of Mines and Geology during the summer of 1968 and 1969 were processed by this program or a modification of the program. The program can be modified to enable production of automatic maps and tables of anomalous samples.
    • Annual report of research progress

      MIRL (University of Alaska Mineral Industry Research Laboratory, 1970)
    • Bibliography of Arctic Water Resources

      Hartman, Charles W.; Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1970-11)
      In July, 1969, the Institute of Water Resources began a study of Alaska's Arctic water resources in response to the impending resource development of Arctic regions. The intent of the study was to provide a literature review of existing information, a model study of the water system in an Arctic region, and a limited field program. It became quite apparent early in the study that a great amount of literature pertaining to the Arctic water cycle was available and would need extensive organization to be useful. It also became apparent that if the literature were organized, the list would be useful to investigators other than ourselves. The result is this Bibliography of Arctic Water Resources.