• Solvent extraction procedure for the determination of tungsten in ores

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1970-11)
      Atomic absorption methods have not been widely used for the determination of tungsten in ores due to its low sensitivity in aqueous solutions (1). A method has now been developed for solvent extraction of tungsten, making rapid determination of tungsten at low concentrations possible. It was found that tungstates, when converted to phosphotungstates, can be effectively extracted into di-isobutyl ketone (2-6 dimethyl - 4 - heptanone) (DIBK) containing Aliquat 336 (methyl tricapryl ammonium chloride from General Mills). This system was effectively used for the extraction of gold from cyanide solutioins (2). Even in aqueous solutions, phospho-tungstates give greater sensitivity (37 µg/ml for 1% absorption) compared to simple tungstates (63 µg/ml for 1% absorption). Standard tungsten solutions for extraction studies were prepared by converting aqueous solutions of sodium tungstate to sodium phospho-tungstate by boiling with ortho phosphoric acid. A Perkin-Elmer Model 303 atomic absorption spectrophotometer was used with a nitrous oxide-acetylene flame at a wavelength of 4008.75 A.
    • The Effects of Water Quality and Quantity on the Fauna of a Non-Glacial Alaskan River

      Morrow, James E. (University of Alaska, Institute of Water Resources, 1971)
    • Characteristics and utilization of fly ash

      Lu, F.C.; Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1971)
      Fly ash produced by four power plants in Fairbanks and vicinity was collected and analyzed. Current fly ash specification and potential users of fly ash in general and in the Fairbanks area in particular were evaluated. A detailed bibliography on utilization of fly ash is appended for reference by producers and potential users of fly ash.
    • Mineral resources of southeastern Alaska

      Wolff, E.N.; Heiner, L.E. (University of Alaska Mineral Industry Research Laboratory, 1971)
      This report is part of a series by the Mineral Industry Research Laboratory describing the mineral occurrences of Alaska. Thus far reports have been issued on Northern Alaska (No. 16) Seward Peninsula (No. 18) and the Wrangell Mountain - Prince William Sound areas (No. 27). All of these reports contain tabulations of all deposits described in the literature. Report No, 27 also has computer drawn maps showing locations of mineral occurrences and a computer printout of certain data about each property. The magnetic tape which produced this printout was made as part of the project under which the report was written, It is capable of printing several options, as described in M. I.R. L. Report No. 24. The present report, M, I, R. L. Report No. 28, also contains a printout, and is also backed up by a magnetic tape. The location maps contained in the back pocket of this report have already been published in limited edition as M. I .R. L. Report No. 25, because it was desired to disseminate the information contained on them as fast as possible. It i s hoped that reports such as this eventually will be issued for all of Alaska.
    • The influence of decomposing salmon on water chemistry

      Brickell, David C.; Goering, John J. (University of Alaska, Institute of Water Resources, 1971)
      To increase our knowledge of the biological and chemical effects of the decomposition of seafood material, we have initiated a study of the decomposition of salmon carcasses in a natural system in southeastern Alaska (i.e. Little Port Walter estuary). The Pacific salmon migrates through this estuary when returning to its natal stream to spawn. Following spawning the fish die and the carcasses are eventually carried to the estuary where they sink to the bottom. During periods of low stream flow, the dead carcasses may remain in the stream itself until higher stream flows transport them to the estuary. In years of large escapements, the density of fish in the spawning stream can be very high. In the system chosen for our work, spawning densities greater than six fish per m2 have been recorded although at the time the current study was conducted the spawning density was slightly more than two fish per m2. Since our system involves primarily pink salmon (O. gorbuscha), the average weight of the fish can be assumed to be 2-3 kilograms. Thus, our study is concerned with the fate and distribution of some 75 metric tons of organic matter in the form of salmon carcasses in one small estuary in Southeastern Alaska. We are particularly interested in determining: (1) the effects of the salmon carcass decomposition on the nitrogen chemistry of the water in which the decomposition occurs; (2) the form and distribution of the organic matter which is returned to the marine system; and (3) the rate at which remineralization occurs. This paper presents the results of our initial investigations.
    • The Effects of Extreme Floods and Placer Mining on the Basic Productivity of Sub Arctic Streams : A Completion Report

      Morrow, James E. (University of Alaska, Institute of Water Resources, 1971)
      The original proposal for this project was submitted to OWRR in the fall of 1967 and envisioned a two year investigation involving the principal investigator and three graduate student assistants, with a first year budget of nearly $25,000.00. However, the project was approved for only one year, with a total budget of $5,757.00. In addition, even these funds did not become available until August 1968. Because of the lateness of availability and the sharp curtailment of the total amount, it was not possible to purchase any equipment. Hence, measurements of rainfall, current velocity, basic productivity, etc., had to be abondoned. All that could be done was to acquire data on the bottom fauna and some physico-chemical characteristics of the water.
    • Copper mineral occurrences in the Wrangell Mountains-Prince William Sound area, Alaska

      Heiner, L.E.; Wolff, E.N.; Grybeck, D.G. (University of Alaska Mineral Industry Research Laboratory, 1971)
      On January 9, 1970, the U.S. Bureau of Mines entered into an agreement with the University of Alaska based upon a proposal submitted by the Mineral Industry Research Laboratory. Under the terms of this agreement, the Laboratory undertook to compile information on copper occurrences in eight quadrangles covering what are loosely known as the Copper River, White River, and Prince William Sound copper provinces. If time permitted four other quadrangles would be added, and this has been possible. Information was to be obtained by searching published and unpublished records of the Bureau of Mines, the U.S. Geological Survey, the State Division of Geological Survey, the University of Alaska, and the recording offices.
    • The Effectiveness of a Contact Filter for the Removal of Iron from Ground Water

      Kim, Steve W. (University of Alaska, Institute of Water Resources, 1971-01)
      Various types of modified filters were investigated to replace greensand filters which clogged when removing ground water. A properly designed uniform-grain sized filter can increase the filtration time more than ten times that of ordinary sand or greensand filters. The filter medium was obtained by passing commercial filter material between two standard sieves of a close size range, so that the resulting medium was of a uniform size. The head loss rate on such a medium was independent of the filter depth and was inversely proportional to the almost 3/2 power of the grain size. On the other hand, the filter depth was almost linearly proportional to the time of protective action. The effects of the grain size, filter depth, and filter material on the filter run were evaluated with a synthetic iron water; and optimum filter depths for each unisized material were determined. At identical filtration conditions, anthracite had a 70 to 110% longer filter run than the sand medium, and it was attributed to the greater porosity of the former. Expectedly, the time to reach initial leakage of the iron floc was greater with the coarse and more porous medium. but was reduced to an insignificant amount when the filter depth was increased to three to six feet. The performance of unisized filters on permanganate-treated ground water was much better than that of fine-grained greensand. Applicability of experimental data on an existing filtration theory was investigated
    • Determination of molybdenum in geological materials

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1971-09)
      This paper will describe a method for the determination of molybdenum in geological materials. It is known that molybdenum as molybdate or phosphomolybdate ion can be extracted using the liquid ion exchanger, Aliquat 336 (methyl tricapryl ammonium chloride, available from General Mills, Inc. Kankakee, Ill.). Aliquat 336 has been used for analytical separation of gold, tungsten, and actinide-lanthanide elements.
    • Economic and Organizational Issues in Alaska Water Quality Management

      Erickson, Gregg K.; Tussing, Arlon R. (University of Alaska, Institute of Water Resources, 1971-09)
    • Optimum transportation systems to serve the mineral industry north of the Yukon basin in Alaska

      Wolff, E.N.; Lambert, C.; Johansen, N.I.; Rhodes, E.M.; Solie, R.J. (University of Alaska Mineral Industry Research Laboratory, 1972)
      In 1972 the U. S . Bureau of Mines awarded a grant (No. G 01 22096) to the Mineral Industry Research Laboratory, University of Alaska, for a research project to determine optimum transportation systems to serve the mineral industry north of the Yukon River basin in Alaska. The study was conducted during the period May 1 - November 1, 1972. The study assesses the mineral potential of the region and selects two copper deposits: a known one at Bornite, and a potential one on the upper Koyukuk River. Two possible mining sites within the extensive coal bearing region north of the Brooks Range are also selected. A computer model was developed to perform an economic analysis of technically feasible transportation modes and routes from these four sites to Alaskan ports from which minerals could be shipped to markets. Transport modes considered are highway, rail, cargo aircraft, river barge, winter haul road and air cushion vehicles (A.C.V.). The computer program calculates the present worth of tax benefits from mining and transportation and revenues based on the value of minerals at the port, as well as the auxillary benefits derived from the anticipated use of the routes by the tourist industry. Annual and fixed costs of mining and transportation of minerals are calculated, and benefit-cost ratios determined for each combination of routes and modes serving the four mineral sites. The study concludes that the best systems in terms of a high benefit-cost ratio are those utilizing a minimum of new construction of conventional highways or railroads. The optimum system as derived from this study is one linking together existing transportation systems with aircraft or A.C.V. These modes are feasible only for the shipment of a high value product, namely blister copper produced by a smelter at the mining site, Of the several alternatives considered for the shipment of coal, only a slurry pipeline to an as yet undeveloped port on the Arctic coast showed significant promise. The study recommends that: 1. More government support should be given to mineral exploration in Alaska. 2. Potential mineral industry development should be considered in transportation planning at state and federal levels. 3. Additional research pertinent to mining and processing of minerals in the North should be conducted, and the feasibility of smelting minerals within Alaska explored. 4. Alternatives for providing power to Northwestern Alaska should be investigated.
    • A computer processable storage and retrieval program for Alaska mineral information

      Heiner, L.E.; Porter, Eve (University of Alaska Mineral Industry Research Laboratory, 1972)
      The Mineral Industry Research Laboratory has developed a storage and retrieval file for Alaska mineral information to facilitate resource studies. The basis for the computer-processable file is the Division of ecological Survey Mineral Kardex system which contains an entry for every mineral property in Alaska that has either been recorded in the literature or has been claimed under the mineral staking laws. Use of the file has greatly increased the research capability of the laboratory to compile resource-oriented reports such as M.I.R.L. Report No. 16, IIFinal Report - Mineral Resources of Northern Alaska," M.I.R.L. Report No. 18, JlKnown and Potential Ore Reserves, Seward Peninsula, Alaska", and M.J.R.L Report No. 27, "Copper Mineral Occurrences in the Wrangell Mountain - Prince William Sound Area, Alaska" and S.E. Alaska Mineral Commodity Maps. The programs have been given the name MINFILE. MINFILEJ refers to a program that stores mineral information on magnetic tape. MINFILE2 is a Retreival program, MINFILE3 is a program to correct and make additions to the file. MINFILE4 and MINFILE5 are utility programs used for maintenance of the system.
    • Environmental quality conditions in Fairbanks, Alaska, 1972

      Pearson, Roger W.; Smith, Daniel W. (University of Alaska, Institute of Water Resources, 1972)
      This study represents a starting point for investigating the nature and interconnectivity of environmental quality problems in Fairbanks in the 1970's. Since the Fairbanks flood of 1967, no detailed survey of environmental quality conditions has been conducted despite the impact of the flood, the considerable expansion of the city limits, and the population expansion (anticipated and actual) associated with the oil pipeline. The study focuses on selective aspects of environmental quality of continuing and increasing concern to Fairbanks area residents and also to the city and borough governments. Specifically, the issues analyzed are (1) the environmental setting of the area, (2) structures, especially housing conditions, (3) premise conditions, and (4) waste control. Much of the data was derived from a program called NEEDS, an acronym for Neighborhood Environmental Evaluation and Decision System. NEEDS was developed by the Bureau of Community Environmental Management of the Department of Health, Education, and Welfare for rapid gathering of environmental, health, and social information in urban areas.1 The NEEDS survey design consists of two separate stages. Stage I is concerned with collecting general environmental quality information to determine geographically where the most pronounced environmental health problems exist in a given urban area. Stage II consists of detailed interviews with residents of the identified "problem areas" to determine the exact nature of existing health and environmental problems, e.g., housing, health, availability of services, and attitudes regarding existing government (local, state, and federal) programs. With this information, local officials could begin to reorganize existing programs and/or develop new programs to solve some of the interrelated environmental quality problems in the disadvantaged sections of their cities.
    • Glacial Processes and Their Relationship to Streamflow Flute Glacier, Alaska

      Long, William E. (University of Alaska, Institute of Water Resources, 1972-01)
      Flute Glacier is located at the head of the South Fork of Eagle River, Alaska, about twenty air-miles east northeast of Anchorage. It is a small north-facing glacier, approximately two miles long and half a mile wide, situated in a deep glacial valley (see Figure 1). Elevations on the glacier range from 3,500 feet at the terminous to 5,800 feet at the top of the accumulation area. Water from Flute Glacier becomes the South Fork of Eagle River, draining about 32 square miles of area compared to a 192 square mile drainage basin for Eagle River. Limited discharge measurements made during October 1968 suggest that the South Fork contributes about 20% of the water flowing down Eagle River. Glacial meltwater forms an important percentage of the waters of the Eagle River system. Glaciers feeding the main Eagle River are large, complex and difficult to study. Flute Glacier, relatively small and of simple plan, was selected for study because of its small size and proximity to the metropolitan area of Anchorage. Water from the Eagle River system is presently included in the plans for future water supply for Anchorage. The Eagle River valley up to the 500 ft contour is a federal power reserve. The climate of the area surrounding Flute Glacier is alpine with cool temperatures and higher than average precipitation for the area. All the glacier is above treeline so no plant life is obvious. Mountain sheep inhabit the sharp alpine peaks surrounding the glacier.
    • Factors Affecting Water Management on the North Slope of Alaska

      Greenwood, Julian K.; Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1972-02)
      The North Slope of Alaska is undergoing sudden development following the recent discovery of large oil and gas reserves in the area. The water resources of the region should be carefully managed both to ensure adequate supplies of usable water at reasonable cost, and to guard against excessive deterioration of water quality. The likely effects on the environment of man's activities are investigated and found to be poorly understood at the present time. Research priorities are suggested to supply rapid answers to questions of immediate importance. The applicability of a regional management concept to the North Slope waters is considered and the concept is recommended as part of a broad land and water planning philosophy which would emphasize regional control over state and federal control. The use of economic incentives rather than standards for the control of water quality is not recommended at the present time.
    • The determination of titanium in titaniferous magnetite ores by atomic absorption spectrophotometry

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1972-03)
      Amos and Willis (1) first investigated the use of nitrous oxide for the determination of titanium. They found that the presence of HF and iron enhance the absorption of titanium. They recommended “much more extensive investigation before a practicing chemical analyst can determine this element in a routine fashion by atomic absorption.” Various authors (2, 3, 4, 5, 6) have investigated titanium by atomic absorption and have recommended a number of different procedures to remove interference. In attempting to analyze lithium metaborate fusions (7, 8) of titaniferous magnetite ores of Alaska by atomic absorption, it was found that the interferences are not completely removed by any single approach suggested in the literature. Silicon, iron and aluminum could vary widely between samples and an approach was needed that would completely eliminate interference effects of all these elements, without having to match the gross matrix composition of samples and standards.
    • A Computer Model of the Tidal Phenomena in Cook Inlet, Alaska

      Carlson, Robert F.; Behlke, Charles E. (University of Alaska, Institute of Water Resources, 1972-03)
    • The Biodegradation of Organic Substrates Under Arctic and Subarctic Conditions

      Murray, Ann P.; Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1972-03)
      The objective of this research was to obtain data on the metabolic reaction rates of the microorganisms indigenous to the cold environments of the arctic and sub-arctic in order to evaluate the natural abilities of the freshwater streams and lakes of Alaska to assimilate the wastes discharged into them. Microorganisms capable of growth even at subzero temperatures have long been known; however, most have consistently fared better at higher temperatures, usually above 20° C. Much of the work done with the biological oxidation of wastes at low temperatures has been with organisms of this type : mesophilic organisms which are able to survive at low temperatures but which are metabolically much more active in the temperature range from 20 to 45° C. Such organisms might be labeled "cold-tolerant," but they are probably biochemically quite different from the truly "cold-loving," or psychrophilic, microorganisms which are able not only to survive but also to thrive at temperatures below 20° C and which, in fact, find temperatures much higher than 25° C intolerable.
    • The Effects of Suspended Silts and Clays on Self-purification in Natural Waters: Protein Adsorption

      Murray, Ann P. (University of Alaska, Institute of Water Resources, 1972-04)
      The effects of the suspended sediments found in many natural waters on the microbial processes involved in the self-purification of those waters are not known. Clays and silts with their large surface area per unit weight have an immense capacity for adsorbing nutrient molecules from solution, but the extent to which such adsorption takes place is largely unknown. Adsorption of a major portion of a biodegradable substance from solution onto a solid surface would significantly alter its susceptibility to bacterial attack and, hence, also the rate at which it is decomposed. In this paper are reported the results of adsorption experiments with soil materials found in some Alaskan waters which are typically heavily sediment-laden. The affinities of these soils for the protein bovine serum albumin were measured as a function of pH, temperature, and protein concentration. An empirical relationship was discovered, for a given soil material, between the equilibrium protein concentration and the initial protein-to-soil ratio. Temperature variations from 5 to 25°C had no detectable effect on adsorption, whereas variations in pH between 2 and 10 had dramatic effects on the extent of adsorption. The amount of protein adsorbed at the pH of the natural water system was so small as to lead one to predict that adsorption of this protein onto suspended sediments would have a negligible effect on the rate at which the protein would be decomposed by bacteria in the aqueous environment.
    • An Analysis of the Demands for Water from the Private Sector in a Sub-Arctic Urban Area

      Haring, Robert C. (University of Alaska, Institute of Water Resources, 1972-04)
      Manufacturing and domestic uses of water are very important to local communities throughout Alaska, although manufacturing typically represents relatively high levels of consumption in terms of population use equivalents. This study is concerned principally with the present water use practices and associated problems in the private sector of the North Star Borough, Alaska.