• Effects of seasonability and variability of streamflow on nearshore coastal areas: final report

      Carlson, Robert F.; Seifert, Richard D.; Kane, Douglas L. (University of Alaska, Institute of Water Resources, 1977-01)
      General nature and scope of the study: This study examines the variability of streamflow in all gaged Alaskan rivers and streams which terminate in the ocean. Forty-one such streams have been gaged for varying periods of time by the U. S. Geological Survey, Water Resources Division. Attempts have been made to characterize streamflow statistically using standard hydrological methods. The analysis scheme which was employed is shown in the flow chart which follows. In addition to the statistical characterization, the following will be described for each stream when possible: 1. average period of break-up initiation (10-day period) 2. average period of freeze-up (10-day period) 3. miscellaneous break-up and freeze-up data. 4. relative hypsometric curve for each basin 5. observations on past ice-jam flooding 6. verbal description of annual flow variation 7. original indices developed in this study to relate streamflow variability to basin characteristics and regional climate.
    • Heat and Mass Transfer in Cold Regions Soils

      Kane, Douglas L.; Luthin, James N.; Taylor, George S. (University of Alaska, Institute of Water Resources, 1975-06)
    • Hydrologic Properties of Subarctic Organic Soils

      Kane, Douglas L.; Seifert, Richard D.; Taylor, George S. (University of Alaska, Institute of Water Resources, 1978-01)
      The need for understanding the natural system and how it responds to various stresses is important; this is especially so in an environment where the climate not only sustains permafrost, but develops massive seasonal frost as well. Consequently, the role of the shallow surface organic layer is also quite important. Since a slight change in the soil thermal regime may bring about a phase change in the water or ice, therefore, the system response to surface alterations such as burning can be quite severe. The need for a better understanding of the behavior and properties of the organic layer is, therefore, accentuated. The central theme of this study was the examination of the hydrologic and hydraulic properties of subarctic organic soils. Summarized in this paper are the results of three aspects of subarctic organic soil examinations conducted during the duration of the project. First, a field site was set up in Washington Creek with the major emphasis on measuring numerous variables of that soil system during the summer. The greatest variations in moisture content occur in the thick organic soils that exist at this site. Our major emphasis was to study the soil moisture levels in these soils. This topic is covered in the first major section, including associated laboratory studies. Those laboratory studies include investigations of several hydraulic and hydrologic properties of taiga organic and mineral soils. Second, some field data on organic moisture levels was collected at the site of prescribed burns in Washington Creek to ascertain the sustainability of fires as a function of moisture levels. This portion of the study is described under the second major heading. The last element of this study was a continued application of the two-dimensional flow model that was developed in an earlier study funded by the U. S. Forest Service, Institute of Northern Forestry, and reported by Kane, Luthin, and Taylor (1975a). Many of the results and concepts gathered in the field work were integrated into the modeling effort, which is aimed at producing better estimates of the hydrologic effects of surface disturbances in the black spruce taiga subarctic ecosystem. This knowledge should also contribute to better fire management decisions of the same system.
    • Hydrology of the Central Arctic River Basins of Alaska

      Kane, Douglas L.; Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1973-12)
    • Juvenile Fish Passage Through Culverts in Alaska: A Field Study

      Kane, Douglas L.; Belke, Charles E.; Gieck, Robert E.; Mclean, Robert F. (2000-06)
      In the past, culvert design where fish passage was considered generally has been based on the weakest-swimming adult fish in a river system. It has also been recognized for some time that juvenile fish are very active throughout the year, moving upstream and downstream in response to a number of environmental factors. In Alaska, many natal and nonnatal streams in southcentral and southeastern Alaska support both Chinook (Oncorhynchus tschawytscha (Walbaum)) and Coho (Oncorhynchus kisutch (Walbaum)) for one to three years, respectively, before they emigrate to sea. Are we restricting desirable habitat for these juvenile salmonids with hydraulic structures such as culverts? Unfortunately we have little information on either the behavior of juveniles in the vicinity of hydraulic structures or their swimming abilities. The objective of this study was to examine the behavior of juveniles when attempting to ascend a culvert. It was hypothesized that vertical obstacles or high velocity of opposing flow may prevent juvenile fish from moving upstream. It was also hypothesized that they would determine and take the path of least resistance to optimize their chances of successfully ascending a culvert. Four culverts were selected for intensive study regarding juvenile fish passage: Beaver and Soldotna Creeks on Kenai Peninsula and No-name and Pass Creek Tributary on Prince of Wales Island. It was postulated that fish are motivated to move upstream to obtain food if they can establish its presence. We used salmon eggs as an attractive food source both to initially capture the juveniles and then to motivate them to ascend the culvert for possible recapture. Juvenile fish were captured in a baited minnow trap and stained with a dye. They were released downstream of the culvert while the food source was placed upstream in a minnow trap. We supplemented our visual observations with underwater video cameras. We made numerous hydrologic and hydraulic measurements at each site. Although we attempted to select culverts that would prove to be quite challenging to juvenile fish passage, in three of the culverts selected, juvenile fish, of the full range of the fork length initially captured, succeeded in ascending through the culvert. For the fourth culvert, some larger juvenile fish succeeded in ascending the culvert, but not the smaller of each fish type. It was clearly established that juvenile fish were motivated to move upstream to obtain food. In the Beaver Creek culvert, fish used the large corrugations to their advantage when ascending the culverts. The Pass Creek Tributary culvert had corrugations too small for fish to utilize. No-name Creek appeared to present not problems for juvenile fish for the water levels at the time of the visit as they small along the bottom on the centerline of the culvert. In general, observations of fish attempting to move upstream through the culvert revealed that they swam very close to the culvert wall, and in the case of high velocities (Beaver Creek and Pass Creed Tributary) they swam near the surface along the sidewall where velocities are reduced. It is obvious that the juvenile fish are attempting to minimize power output and energy expenditure by taking the path of least resistance. Although not quantitavely proven, it appears that as long as fish make some headway in their upstream movement they are content. The rationale for this conclusion is that fish do not know what they may encounter upstream so they attempt to conserve as much power and energy as possible while still moving forward. They generally do so by seeking out the lowest velocities in the cross-section. In areas of steep velocity gradients along the wall (where the areal extent of low velocities is limited), it is clear in our videotapes that fish have problems maintaining their position and preferred orientation. It is apparent from our observations that because of their small size, juvenile fish are hindered by turbulence and that this area needs more study.
    • New 2012 Precipitation Frequency Estimation Analysis for Alaska: Musings on Data Used and the Final Product

      Kane, Douglas L.; Stuefer, Svetlana (Alaska University Transportation Center, Alaska Department of Transportation and Public Facilities, 2013)
    • Snowmelt -frozen soil characteristics for a subarctic setting

      Kane, Douglas L.; Seifert, Richard D.; Fox, John D.; Taylor, George S. (University of Alaska, Institute of Water Resources, 1978-01)
      The pathways of soil water in cold climates are influenced, in addition to the normal forces, by the presence of permafrost and the temperature gradients in the soil system, whereas the infiltration of surface water into the soil system is a function of moisture levels, soil type and condition of the soil (whether it is frozen or not). Snowfall, with subsequent surface storage over a period of several months, typifies Alaskan winters. This snowfall often accounts for 50 per cent or more of the annual precipitation, with ablation occurring over a time span of 2 to 3 weeks in the spring. The melt period represents an event when large quantities of water may enter the soil system; the possibilities exist for recharging the groundwater system, or else generating surface runoff. The objective of this study was to determine the magnitude of potential groundwater recharge from snowmelt. Instrumentation was installed and monitored over two winter seasons to quantify the accumulation and ablation of the snowpack. Thermal and moisture data were collected to characterize the snow pack and soil conditions prior to, during, and following the ablation. Lysimeters were installed at various depths to intercept soil water. The volume of potential areal recharge for 1976 was 3.5 cm and for 1977 was 3.0 cm, which represented about 35 per cent of the maximum snowpack content. It is concluded that permafrost-free areas can contribute significantly to groundwater recharge during snowmelt ablation.