• Factors affecting costs of mining in Alaska

      Lambert, C.; Taylor, D. (University of Alaska Mineral Industry Research Laboratory, 1982)
      The basic factors which affect the cost of mining in Alaska are discussed herein. Contrary to popular opinion, cold weather is not the major factor. This problem has, for the most part, been solved through experience in Eastern Canada and later efforts in British Columbia and the Yukon. Remoteness and isolation and its effect upon personnel, inventory and services of all kinds are among the more difficult with which to anticipate and cope. Considerable creativity is required to solve these problems, which differ somewhat with the type and location of mineral deposit, and will quite likely require solutions at variance with the current attitudes and practices of the company involved. In Alaska, electric power, transportation and land tenure pose difficulties of a type not experienced when existing mines in Canada were developed.
    • Optimum transportation systems to serve the mineral industry north of the Yukon basin in Alaska

      Wolff, E.N.; Lambert, C.; Johansen, N.I.; Rhodes, E.M.; Solie, R.J. (University of Alaska Mineral Industry Research Laboratory, 1972)
      In 1972 the U. S . Bureau of Mines awarded a grant (No. G 01 22096) to the Mineral Industry Research Laboratory, University of Alaska, for a research project to determine optimum transportation systems to serve the mineral industry north of the Yukon River basin in Alaska. The study was conducted during the period May 1 - November 1, 1972. The study assesses the mineral potential of the region and selects two copper deposits: a known one at Bornite, and a potential one on the upper Koyukuk River. Two possible mining sites within the extensive coal bearing region north of the Brooks Range are also selected. A computer model was developed to perform an economic analysis of technically feasible transportation modes and routes from these four sites to Alaskan ports from which minerals could be shipped to markets. Transport modes considered are highway, rail, cargo aircraft, river barge, winter haul road and air cushion vehicles (A.C.V.). The computer program calculates the present worth of tax benefits from mining and transportation and revenues based on the value of minerals at the port, as well as the auxillary benefits derived from the anticipated use of the routes by the tourist industry. Annual and fixed costs of mining and transportation of minerals are calculated, and benefit-cost ratios determined for each combination of routes and modes serving the four mineral sites. The study concludes that the best systems in terms of a high benefit-cost ratio are those utilizing a minimum of new construction of conventional highways or railroads. The optimum system as derived from this study is one linking together existing transportation systems with aircraft or A.C.V. These modes are feasible only for the shipment of a high value product, namely blister copper produced by a smelter at the mining site, Of the several alternatives considered for the shipment of coal, only a slurry pipeline to an as yet undeveloped port on the Arctic coast showed significant promise. The study recommends that: 1. More government support should be given to mineral exploration in Alaska. 2. Potential mineral industry development should be considered in transportation planning at state and federal levels. 3. Additional research pertinent to mining and processing of minerals in the North should be conducted, and the feasibility of smelting minerals within Alaska explored. 4. Alternatives for providing power to Northwestern Alaska should be investigated.
    • Significant parameters of mining properties in arctic and subarctic areas of North America

      Hackney, D.A.; Lambert, C. (University of Alaska Mineral Industry Research Laboratory, 1983)
      This paper is a review of those factors unique to mining in the Arctic and subarctic. The information was developed from an exhaustive Literature search and personal visits to several northern mines in North America. The intent is to present a broad overview of many of these factors, to identify and stimulate consideration of parameters that are likely to be overlooked by companies end persons wlthout p rior arctic experience. Topics of discussion include exploration, cold weather plant design, blasting in permafrost, living conditions and employees relations. The appendices are a brief discussion of a number of the arctic and subarctic operations in North America. In brief, minlng in northern regions is practical provided the deposit has sufficient value to support the higher construction, transportation and operating costs associated with the remoteness and cold weather. Hiring and retaining good employees and integrating the native labor force into the operation have proven to be the most difficult problems. Equipment and plant operation are problems more easily solved.