• Bibliography of Published Reports and Articles Related to Hydrological Research on the Sagavanirktok River

      Youcha, Emily; Toniolo, Horacio (2017-08)
      Researchers from the Water and Environmental Research Center (WERC), University of Alaska Fairbanks (UAF), are conducting a study of sediment transport conditions along the Sagavanirktok River. This document, as part of the study, provides a compilation of published literature related to the Sagavanirktok River (or adjacent watersheds with similar characteristics) including previous or ongoing hydrological and sedimentological research in the Sagavanirktok River basin. The literature referenced includes research on climate change, hydrology, sedimentology, permafrost and soils, meteorology, field data, satellite or aerial imagery, geophysics, modeling, water quality, and geochemistry in the Sagavanirktok River basin.
    • Developing Guidelines for Two-Dimensional Model Review and Acceptance

      Toniolo, Horacio; Homan, Joel (Center for Environmentally Sustainable Transportation in Cold Climates, 2018-01-31)
      Two independent modelers ran two hydraulic models, SRH-2D and HEC-RAS 2D. The models were applied to the Lakina River (MP 44 McCarthy Road) and to Quartz Creek (MP 0.7 Quartz Creek Road), which approximately represent straight and bend flow conditions, respectively. We compared the results, including water depth, depth averaged velocity, and bed shear stress, from the two models for both modelers. We found that the extent and density of survey data were insufficient for Quartz Creek. Neither model was calibrated due to the lack of basic field data (i.e., discharge, water surface elevation, and sediment characteristics). Consequently, we were unable to draw any conclusion about the accuracy of the models. Concerning the time step and the equations used (simplified or full) to solve the momentum equation in the HEC-RAS 2D model, we found that the minimum time step allowed by the model must be used if the diffusion wave equation is used in the simulations. A greater time step can be used if the full momentum equation is used in the simulations. We developed a set of guidelines for reviewing model results, and developed and provided a two-day training workshop on the two models for ADOT&PF hydraulic engineers.
    • Monitoring Winter Flow Conditions on the Ivishak River, Alaska

      Toniolo, Horacio; Vas, D.; Keech, J.; Bailey, J. (Center for Environmentally Sustainable Transportation in Cold Climates, 2017-09)
      The Sagavanirktok River, a braided river on the Alaska North Slope, flows adjacent to the trans-Alaska pipeline for approximately 100 miles south of Prudhoe Bay. During an unprecedented flooding event in mid-May 2015, the pipeline was exposed in an area located approximately 20 miles south of Prudhoe Bay. The Ivishak River is a main tributary of the Sagavanirktok River, but little is known about its water flow characteristics and contribution to the Sagavanirktok River, especially in winter and during spring breakup. To gather this information, we installed water level sensors on two main tributaries of the Ivishak River (Upper Ivishak and Saviukviayak rivers), early in winter season 2016–2017, in open-water channels that showed promise as locations for long-term gauging stations. Our ultimate goal was to find a location for permanent deployment of water level sensors. By February, the first sites chosen were ice covered, so two additional sensors, one on each river, were deployed in different locations. Some of the sensors were lost (i.e., carried away by the current or buried under a thick layer of sediments). Water level data gathered from the sensors showed a maximum change of 1.07 m. Winter discharge measurements indicate a 44% reduction between February and April 2017. A summer discharge measurement shows a 430% increase from winter to summer.
    • Sagavanirktok River Particle Size Distributions

      Tape, Ken; Clark, Jason; Toniolo, Horacio (2017-10)
    • Study to Compare the Performance of Two Designs to Prevent River Bend Erosion in Arctic Environments

      Toniolo, Horacio; Duvoy, Paul (Alaska University Transportation Center, Alaska Department of Transportation and Public Facilities, 2010)